This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has b...This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.展开更多
The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) sta...The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) standard in rocks is sufficient or not, and to examine how the degree of saturation of rocks may be determined as a function of time. For this purpose, samples from five different rock groups including igneous(andesite, granite, andesitic tuff) and sedimentary(limestone, sandstone) exposed in Gümü?hane city which is from mountainous area of north-eastern Turkey, have been compiled. Measurements were taken on the samples left for saturation under laboratory conditions as a result of which the degree of saturation values at the end of these time periods were determined. Similarly, at the end of 48 hours, the samples were left to dry under atmospheric conditions in the laboratory environment and their time dependent degree of saturation were also calculated at different times. The changes as a function of time in the degree of saturation were then examined mathematically using non-linear, exponential and logarithmic functions. Graphs and equations related with the acquired time-degree of saturation values and the correlation coefficient(r) values for these equalities have indicated a high accordance between time and degree of saturation for the studied rock groups. The applied methodology will be beneficial for determining the degree of saturation based on time for engineering studies that will be carried out in similar lithologies.展开更多
In order to fulfil the microgravity requirements for space experiments, improved technology for the microgravity environment is proposed, including that for raising the orbital altitude, optimizing the layout of the d...In order to fulfil the microgravity requirements for space experiments, improved technology for the microgravity environment is proposed, including that for raising the orbital altitude, optimizing the layout of the disturbance source, using IN-thrusters instead of 5 N-thrusters, etc. In addition, evaluation of the microgravity environment of the recoverable satellite was also conducted using on-orbit micro-vibration measurement, on-orbit experiment and data analysis technologies. The microgravity level of the SJ-l0 recoverable satellite in China is compared with the spacecraft used for carrying out space science experiments internationally. This paper describes the microgravity environment of the SJ- 10 recoverable satellite, and its importance for analysing space experimental results.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046805)National Natural Science Foundation of China(No.51131007,No.51371124)+1 种基金Natural Science Foundation of Tianjin(No.14JCYBJC17700)the Open-Ended Fund of the Key Laboratory of Nuclear Materials and Safety Assessment(Institute of Metal Research,Chinese Academy of Sciences,China)(No.2016NMSAKF02)
文摘This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.
文摘The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) standard in rocks is sufficient or not, and to examine how the degree of saturation of rocks may be determined as a function of time. For this purpose, samples from five different rock groups including igneous(andesite, granite, andesitic tuff) and sedimentary(limestone, sandstone) exposed in Gümü?hane city which is from mountainous area of north-eastern Turkey, have been compiled. Measurements were taken on the samples left for saturation under laboratory conditions as a result of which the degree of saturation values at the end of these time periods were determined. Similarly, at the end of 48 hours, the samples were left to dry under atmospheric conditions in the laboratory environment and their time dependent degree of saturation were also calculated at different times. The changes as a function of time in the degree of saturation were then examined mathematically using non-linear, exponential and logarithmic functions. Graphs and equations related with the acquired time-degree of saturation values and the correlation coefficient(r) values for these equalities have indicated a high accordance between time and degree of saturation for the studied rock groups. The applied methodology will be beneficial for determining the degree of saturation based on time for engineering studies that will be carried out in similar lithologies.
文摘In order to fulfil the microgravity requirements for space experiments, improved technology for the microgravity environment is proposed, including that for raising the orbital altitude, optimizing the layout of the disturbance source, using IN-thrusters instead of 5 N-thrusters, etc. In addition, evaluation of the microgravity environment of the recoverable satellite was also conducted using on-orbit micro-vibration measurement, on-orbit experiment and data analysis technologies. The microgravity level of the SJ-l0 recoverable satellite in China is compared with the spacecraft used for carrying out space science experiments internationally. This paper describes the microgravity environment of the SJ- 10 recoverable satellite, and its importance for analysing space experimental results.