The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk ...The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk and on its surface were investigated using the first principles. The simulation results indicate that Mg(OH)2 was easily modified by other cations because of its strong, favorable interstitial and substitution defects via point defect energy calculation. Mg(OH)2 can provide high-efficiency flame retardancy because of the strong OH(OH Schottky defect) or H bond(H Frenkel defect and Schottky defect). The potential model of Mg(OH)2 was established, and molecular dynamics simulation was used to investigate the relations between the crystal structure and the mechanical properties. Mg(OH)2 with special morphology such as nano-sheets was a prior consideration to maintain the composite mechanical properties. The detailed electronic structures of Mg(OH)2 with defects were determined. This work may provide theoretical guidance for choosing dopant element and reveal the element doping mechanism of Mg(OH)2.展开更多
A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiate...A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone sp...Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu...Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.展开更多
In the Hellings Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the processi...In the Hellings Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.展开更多
The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigate...The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.展开更多
Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.He...Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.Here,we present a comprehensive ultrafast study on defect-mediated carrier dynamics in ion exchange prepared few-layer MoS2 by femtosecond time-resolved Vis-NIR-MIR spectroscopy.The broadband photobleaching feature observed in the near-infrared transient spectrum discloses that the mid-gap defect states are widely distributed in few-layer MoS2 nanosheets.The processes of fast trapping of carriers by defect states and the following nonradiative recombination of trapped carriers are clearly revealed,demonstrating the mid-gap defect states play a significant role in the photoinduced carrier dynamics.The positive to negative crossover of the signal observed in the mid-infrared transient spectrum further uncovers some occupied shallow defect states distributed at less than0.24 e V below the conduction band minimum.These defect states can act as effective carrier trap centers to assist the nonradiative recombination of photo-induced carriers in few-layer MoS2 on the picosecond time scale.展开更多
The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with...The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.展开更多
Objective: To observe the effect of acupuncture for children with attention deficit hyperactivity disorder (ADHD). Methods: A total of 36 cases were recruited in this study. Before treatment, a Chinese medical con...Objective: To observe the effect of acupuncture for children with attention deficit hyperactivity disorder (ADHD). Methods: A total of 36 cases were recruited in this study. Before treatment, a Chinese medical constitution survey was conducted on these children. Based on the survey findings, the children were divided in different groups for acupuncture intervention. Additionally, the heart rate variability and attention were detected respectively before treatment, in the 12th and 24th week after treatment. Results: ADHD kids commonly manifest as a body constitution of yang predominance and heat exuberance. The kids' Body Mass Indexes (BMI) are moderately correlated with attention deficit disorder (ADD). After the treatment of 24 weeks, the ADHD scores were reduced from (10.94±1.98) to (8.56±2.48), showing a statistical significance (P〈0.05); in addition, the low frequency/high frequency (LF/HF) and normalized low frequency (nLF) between the two groups were also statistically different (P〈0.05). Conclusion: Most ADHD kids present with a body constitution of yang predominance and heat exuberance. A well-controlled BMI is helpful for ADHD treatment. Acupuncture can be a supplementary therapy to improve the ADHD symptoms.展开更多
We present a computer simulation study on the influence of incident ions on the energy transferred to primary knock-on atoms(PKAs)and defects produced in the cascade collision of irons.Three types of ions(H,Fe,and Xe,...We present a computer simulation study on the influence of incident ions on the energy transferred to primary knock-on atoms(PKAs)and defects produced in the cascade collision of irons.Three types of ions(H,Fe,and Xe,which are frequently used in irradiation experiments)with an energy of 3 MeV were simulated.According to the calculation results of SRIM,the average energy transferred to PKAs by Fe ions was the highest among the three types.Then,cascade collisions induced by PKAs with different energies were simulated by the molecular dynamics method.The maximum number of defects produced during irra-diation increased,and the time taken by defect number peak formation was extended with the increased energy of PKAs.The difference in radial distribution function between pre-and post-irradiation irons showed that a higher energy of PKA transferred resulted in a flatter curve.Besides,the law of defects varying in temperature was also investigated.All the researches imply that heavy ions can substitute for neutrons in irradiation experiments which is a practicable way,but the influence of conditions must be taken into account.展开更多
In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the ...In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the yield behaviors of the NWs.The results have shown that the yield behavior of the smaller diameter NW is more sensitive to the presence of vacancies,and the dispersion of the measured mechanical properties for the small scale NW is larger than that for the large scale NW.Present results have also shown that vacancies escape from the bulk to the free surfaces as a result of high stress applied at the small scale systems similar to the dislocation starvation phenomenon observed in the compression test of nano-pillars,and dislocation nucleation induced by surface defect occurs after the vacancy reaches free surface leading to lower yield strength.Moreover,the strong surface vacancy interactions at the nanoscale level are also investigated.展开更多
The point defects and their related physical properties in L10 FePt are investigated by molecular dynamics simulations based on an analytic bond-order potential. The calculated results agree well with the experimental...The point defects and their related physical properties in L10 FePt are investigated by molecular dynamics simulations based on an analytic bond-order potential. The calculated results agree well with the experimental value, indicating that the analytic bond-order potential is suitable to describe the structural properties and surface energies of the FePt alloy in the L10 phase. However, the calculated vacancy formation energy of an Fe atom is higher than that of a Pt atom, which disagrees with some other previously calculated results. This result indicates that the analytic bond-order potential is unable to describe the related point defect properties. The analytic bond-order potential needs to be modified in order to study these defect properties of an FePt alloy.展开更多
Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stabili...Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.展开更多
基金Projects(5117413820971088)supported by the National Natural Science Foundation of China+1 种基金Project(JCYJ20130329102720840)supported by Shenzhen Government’s Plan of Science and TechnologyChina
文摘The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk and on its surface were investigated using the first principles. The simulation results indicate that Mg(OH)2 was easily modified by other cations because of its strong, favorable interstitial and substitution defects via point defect energy calculation. Mg(OH)2 can provide high-efficiency flame retardancy because of the strong OH(OH Schottky defect) or H bond(H Frenkel defect and Schottky defect). The potential model of Mg(OH)2 was established, and molecular dynamics simulation was used to investigate the relations between the crystal structure and the mechanical properties. Mg(OH)2 with special morphology such as nano-sheets was a prior consideration to maintain the composite mechanical properties. The detailed electronic structures of Mg(OH)2 with defects were determined. This work may provide theoretical guidance for choosing dopant element and reveal the element doping mechanism of Mg(OH)2.
文摘A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
基金Project(2014CB046905,2013CB36003)supported by the National Basic Research Program of ChinaProject(NCET-12-0961)supported by the Program for New Century Excellent Talents in University,China+1 种基金Projects(51179189,41272344)supported by the National Natural Science Foundation of ChinaProject(HBKLCIV201201)supported by the Open Research Fund Program of the Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province,China
文摘Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.
基金Project(2020B090922002)supported by Guangdong Provincial Key Field Research and Development Program,ChinaProjects(51875215,52005189)supported by the National Natural Science Foundation of ChinaProject(2019B1515120094)supported by Guangdong Provincial Basic and Applied Basic Research Fund,China。
文摘Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.
基金The project supported by National Natural Science Foundation of China under Grant No.19975018+2 种基金National Basic Research Program of China under Grant No.2003CB716300Natural Science Foundation of Hunan Province of China under Grant No.01JJY2084
文摘In the Hellings Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.
基金supported by the National Key Research and Development Program of China(No.2018YFA0208700)the National Natural Science Foundation of China(No.21603270 and No.21773302)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000)。
文摘Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.Here,we present a comprehensive ultrafast study on defect-mediated carrier dynamics in ion exchange prepared few-layer MoS2 by femtosecond time-resolved Vis-NIR-MIR spectroscopy.The broadband photobleaching feature observed in the near-infrared transient spectrum discloses that the mid-gap defect states are widely distributed in few-layer MoS2 nanosheets.The processes of fast trapping of carriers by defect states and the following nonradiative recombination of trapped carriers are clearly revealed,demonstrating the mid-gap defect states play a significant role in the photoinduced carrier dynamics.The positive to negative crossover of the signal observed in the mid-infrared transient spectrum further uncovers some occupied shallow defect states distributed at less than0.24 e V below the conduction band minimum.These defect states can act as effective carrier trap centers to assist the nonradiative recombination of photo-induced carriers in few-layer MoS2 on the picosecond time scale.
文摘The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.
文摘Objective: To observe the effect of acupuncture for children with attention deficit hyperactivity disorder (ADHD). Methods: A total of 36 cases were recruited in this study. Before treatment, a Chinese medical constitution survey was conducted on these children. Based on the survey findings, the children were divided in different groups for acupuncture intervention. Additionally, the heart rate variability and attention were detected respectively before treatment, in the 12th and 24th week after treatment. Results: ADHD kids commonly manifest as a body constitution of yang predominance and heat exuberance. The kids' Body Mass Indexes (BMI) are moderately correlated with attention deficit disorder (ADD). After the treatment of 24 weeks, the ADHD scores were reduced from (10.94±1.98) to (8.56±2.48), showing a statistical significance (P〈0.05); in addition, the low frequency/high frequency (LF/HF) and normalized low frequency (nLF) between the two groups were also statistically different (P〈0.05). Conclusion: Most ADHD kids present with a body constitution of yang predominance and heat exuberance. A well-controlled BMI is helpful for ADHD treatment. Acupuncture can be a supplementary therapy to improve the ADHD symptoms.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP)(Grant No.20133218110023)the Fundamental Research Funds for the Central Universities+1 种基金the Fundation of Graduate Innovation Center in NUAA(Grant No.kfjj20130217)the Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities(Grant No.CXZZ13_0159)
文摘We present a computer simulation study on the influence of incident ions on the energy transferred to primary knock-on atoms(PKAs)and defects produced in the cascade collision of irons.Three types of ions(H,Fe,and Xe,which are frequently used in irradiation experiments)with an energy of 3 MeV were simulated.According to the calculation results of SRIM,the average energy transferred to PKAs by Fe ions was the highest among the three types.Then,cascade collisions induced by PKAs with different energies were simulated by the molecular dynamics method.The maximum number of defects produced during irra-diation increased,and the time taken by defect number peak formation was extended with the increased energy of PKAs.The difference in radial distribution function between pre-and post-irradiation irons showed that a higher energy of PKA transferred resulted in a flatter curve.Besides,the law of defects varying in temperature was also investigated.All the researches imply that heavy ions can substitute for neutrons in irradiation experiments which is a practicable way,but the influence of conditions must be taken into account.
基金supported by the National Natural Science Foundation of China (Grants Nos. 50904071,11021262,10932011 and 91116003)the Fundamental Research Funds for the Central Universities (Grant No.2010QZ01)the National Basic Research Program of China (Grant No.2012CB937500)
文摘In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the yield behaviors of the NWs.The results have shown that the yield behavior of the smaller diameter NW is more sensitive to the presence of vacancies,and the dispersion of the measured mechanical properties for the small scale NW is larger than that for the large scale NW.Present results have also shown that vacancies escape from the bulk to the free surfaces as a result of high stress applied at the small scale systems similar to the dislocation starvation phenomenon observed in the compression test of nano-pillars,and dislocation nucleation induced by surface defect occurs after the vacancy reaches free surface leading to lower yield strength.Moreover,the strong surface vacancy interactions at the nanoscale level are also investigated.
基金supported by the National Natural Science Foundation of China (Grant No. 50971011)the Beijing Natural Science Foundation (Grant No. 1102025)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110038)
文摘The point defects and their related physical properties in L10 FePt are investigated by molecular dynamics simulations based on an analytic bond-order potential. The calculated results agree well with the experimental value, indicating that the analytic bond-order potential is suitable to describe the structural properties and surface energies of the FePt alloy in the L10 phase. However, the calculated vacancy formation energy of an Fe atom is higher than that of a Pt atom, which disagrees with some other previously calculated results. This result indicates that the analytic bond-order potential is unable to describe the related point defect properties. The analytic bond-order potential needs to be modified in order to study these defect properties of an FePt alloy.
文摘Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.