The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An...The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An improved CFD/CSD coupled system is designed, including an interpolation method and an improved loosely coupled algorithm. The interpolation method based on boundary element method (BEM) is developed to transfer aerodynamic loads and structural displacements between CFD and CSD grid systems, it can be universally used in fluid structural interaction solution by keeping energy conservation. The improved loosely coupled algo-rithm is designed, thus it improves the computational accuracy and efficiency. The new interface is performed on the two-dimensional (2-D) extrapolation and the aeroelastie response of AGARD445.6 wing. Results show that the improved interface has a superior accuracy.展开更多
Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalizat...Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.展开更多
Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-...Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.展开更多
Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't b...Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving convertedwave statics problems. This has become the main obstacle to breakthroughs in convertedwave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.展开更多
A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(...A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(θ;μ;κ) is a two-mode rotational displacing-squeezing operator in the 〈η| representation. Based on this, the Parseval theorem and the inversion formula of RCWT have been proved. The concise proof not only manifestly shows the merit of Dirac's representation theory but also leads to a new orthogonal property of complex mother wavelets in parameter space.展开更多
The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR...The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.展开更多
We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained ...We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.展开更多
By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-...By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additiyity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.展开更多
The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vy...The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin were applied to the analysis of the DSC and TGA data. The results showed that CdO nanoparticles prepared from CdCO3 followed an autocatalytic reaction. Sestak–Berggren model could favorably describe the studied reaction process. Moreover, the apparent activation energy of CdCO3 decomposition was calculated to be (119.19±9.97) kJ/mol and the explicit rate equation form of CdCO3 decomposition was established.展开更多
There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute thre...There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.展开更多
A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sough...A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.展开更多
Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitra...Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitrary functions is derived.展开更多
[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the st...[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the structures and functions of radical SAM enzymes have been extensively studied,the electronic state-dependent reactions of the[4Fe-4S]clusters in these enzymes are still elusive.Herein we performed QM/MM calculations to elucidate the electronic state-dependent reactivity of the[4Fe-4S]cluster in pyruvate-formate lyase activating enzyme.Our calculations show that the electronic statedependent SAM activation by the[4Fe-4S]clusters in radical SAM enzyme is determined by both the super-exchange and exchange-enhanced reactivities.The super-exchange coupling in the[4Fe-4S]cluster favors the antiferromagnetic coupling between two neighbouring pairs,which results in theα-electron rather than theβ-electron donation from the[4Fe-4S]^(1+)cluster toward the SAM activation.Meanwhile,in the most favorable electronic state for the reductive cleavage of S-C5′,Fe4 would donate itsα-electron to gain the maximum exchange interactions in the Fe4-block.Such super-exchange and exchange-enhanced reactivity could be the general principles for reactivities of[4Fe-4S]cluster in RS enzymes.展开更多
基金Supported by the Ph.D.Program Foundation of Ministry of Education of China (20070699054)~~
文摘The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An improved CFD/CSD coupled system is designed, including an interpolation method and an improved loosely coupled algorithm. The interpolation method based on boundary element method (BEM) is developed to transfer aerodynamic loads and structural displacements between CFD and CSD grid systems, it can be universally used in fluid structural interaction solution by keeping energy conservation. The improved loosely coupled algo-rithm is designed, thus it improves the computational accuracy and efficiency. The new interface is performed on the two-dimensional (2-D) extrapolation and the aeroelastie response of AGARD445.6 wing. Results show that the improved interface has a superior accuracy.
基金National Natural Science Foundation of China under Grant No.10775097
文摘Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.
基金Supported by the National Natural Science Foundation of China (No.10272029).
文摘Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.
文摘Converted waves have slow velocity and low signal-to-noise ratio. It is also difficult to pick first-breaks and bin the common-conversion-points (CCP). Some statics methods, which work well for P-wave data, can't be effectively used for solving convertedwave statics problems. This has become the main obstacle to breakthroughs in convertedwave data processing. To improve converted-wave static corrections, first, a statics method based on the common-receiver-point (CRP) stack is used for the initial receiver static correction to enhance the coherency of the CRP stack. Second, a stack-power-maximization static correction which improves the continuity of the CCP stack is used for detailed receiver statics. Finally, a non-surface-consistent residual moveout correction of the CCP gathers is used to enhance the stack power of reflection signals from different depths. Converted-wave statics are solved by the joint use of the three correction methods.
基金National Natural Science Foundation of China under Grant No.10647133the Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]22
文摘A rotational parameter Rθ has been introduced to complex wavelet transform (CWT). The rotational CWT (RCWT) corresponds to a matrix element 〈φ|U2(θ;μ;κ)[F〉 in the context of quantum mechanics, where U2(θ;μ;κ) is a two-mode rotational displacing-squeezing operator in the 〈η| representation. Based on this, the Parseval theorem and the inversion formula of RCWT have been proved. The concise proof not only manifestly shows the merit of Dirac's representation theory but also leads to a new orthogonal property of complex mother wavelets in parameter space.
文摘The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056
文摘We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.
基金National Natural Science Foundation of China under Grant Nos.10775097,10874174,and 10647133the Natural Science Foundation of Jiangxi Province under Grant Nos.2007GQS1906 and 2007GZS1871the Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]22
文摘By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additiyity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.
文摘The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin were applied to the analysis of the DSC and TGA data. The results showed that CdO nanoparticles prepared from CdCO3 followed an autocatalytic reaction. Sestak–Berggren model could favorably describe the studied reaction process. Moreover, the apparent activation energy of CdCO3 decomposition was calculated to be (119.19±9.97) kJ/mol and the explicit rate equation form of CdCO3 decomposition was established.
文摘There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.
文摘A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ04008
文摘Starting from a special variable transformation and with the help of an extended mapping approach, the high-order Schrodinger equation (n = 3, 4) is solved. A new family of variable separation solutions with arbitrary functions is derived.
基金supported by the National Natural Science Foundation of China (No.22073077, No.21933009,and No.21907082)
文摘[4Fe-4S]-dependent radical S-adenosylmethionine(SAM)proteins are a superfamily of oxidoreductases that can catalyze a series of challenging transformations using the common 5-d Ado radical intermediate.Although the structures and functions of radical SAM enzymes have been extensively studied,the electronic state-dependent reactions of the[4Fe-4S]clusters in these enzymes are still elusive.Herein we performed QM/MM calculations to elucidate the electronic state-dependent reactivity of the[4Fe-4S]cluster in pyruvate-formate lyase activating enzyme.Our calculations show that the electronic statedependent SAM activation by the[4Fe-4S]clusters in radical SAM enzyme is determined by both the super-exchange and exchange-enhanced reactivities.The super-exchange coupling in the[4Fe-4S]cluster favors the antiferromagnetic coupling between two neighbouring pairs,which results in theα-electron rather than theβ-electron donation from the[4Fe-4S]^(1+)cluster toward the SAM activation.Meanwhile,in the most favorable electronic state for the reductive cleavage of S-C5′,Fe4 would donate itsα-electron to gain the maximum exchange interactions in the Fe4-block.Such super-exchange and exchange-enhanced reactivity could be the general principles for reactivities of[4Fe-4S]cluster in RS enzymes.