Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome ...Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.展开更多
Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
基金Supported by National Natural Science Foundation of China( No. 50378061).
文摘Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.