期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
位置扰动型施力系统的两种建模方法 被引量:7
1
作者 肖金陵 周华 李壮云 《液压与气动》 北大核心 1993年第5期13-16,共4页
介绍了位置扰动型施力系统的两种建模方法,以及各自所采取的消除多余力的措施,分析了两种数学模型各自在不同条件下应用的优越性。
关键词 液压伺服系统 力模拟器 自动控制
下载PDF
混合动力汽车制动系统简析 被引量:1
2
作者 周晓飞 《汽车维修与保养》 2019年第4期85-87,共3页
一、混合动力制动系统概述电动汽车(电动汽车包括纯电动汽车、混合动力汽车和燃料电池汽车)的制动系统与其他汽车基本相同。不同的是,在电动汽车上,一般还有电磁制动装置,它可以利用驱动电动机的控制电路实现电动机的发电运行,使减速制... 一、混合动力制动系统概述电动汽车(电动汽车包括纯电动汽车、混合动力汽车和燃料电池汽车)的制动系统与其他汽车基本相同。不同的是,在电动汽车上,一般还有电磁制动装置,它可以利用驱动电动机的控制电路实现电动机的发电运行,使减速制动时的能量转换成对蓄电池充电的电流,从而得到再生利用。混合动力汽车的制动系统不仅仅用于使车辆可靠、稳定地减速。 展开更多
关键词 混合动 SBA 电磁阀 制动系统 控制单元 制动踏板 电动真空泵 制动助 真空压传感器 力模拟器 车轮制动器 液压制动系统 制动能量 机械式继电器 能量回收
下载PDF
Numerical and experimental studies of flow field in hydrocyclone with air core 被引量:12
3
作者 崔宝玉 魏德洲 +2 位作者 高淑玲 刘文刚 Yu-qing FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2642-2649,共8页
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res... For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities. 展开更多
关键词 HYDROCYCLONE computational fluid dynamics particle image velocimetry flow field air core
下载PDF
NUMERICAL INVESTIGATION OF AERODYNAMIC AND MIXING CHARACTERISTICS OF SCARFED LOBED MIXER FOR TURBOFAN ENGINE EXHAUST SYSTEM 被引量:6
4
作者 单勇 张靖周 徐亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期130-136,共7页
The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the ... The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer. 展开更多
关键词 AERODYNAMICS numerical simulation MIXERS scarfed lobed nozzle aerodynamic characteristics
下载PDF
Numerical simulation of a gas pipeline network using computational fluid dynamics simulators 被引量:9
5
作者 SELEZNEV Vadim 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期755-765,共11页
This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipelin... This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise. 展开更多
关键词 Long branched gas pipeline network UNSTEADY Non-isothermal gas flow CFD-simulator Numerical simulation Finite Volume Method Interior Point Method
下载PDF
Dynamic simulation and experimental study of inspection robot for high-voltage transmission-line 被引量:6
6
作者 肖晓晖 吴功平 +1 位作者 杜娥 史铁林 《Journal of Central South University of Technology》 EI 2005年第6期726-731,共6页
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ... A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control. 展开更多
关键词 inspection robot TRANSMISSION-LINE dynamic modeling numerical simulation dynamic experiment
下载PDF
CFD Analysis of Gas Distributor in Packed Column ——Prediction of Gas Flow and Effect of Tower Internals Geometry Structure 被引量:3
7
作者 张吕鸿 周海鹰 +1 位作者 李鑫钢 杜玉萍 《Transactions of Tianjin University》 EI CAS 2004年第4期270-274,共5页
Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and t... Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered. 展开更多
关键词 packed column gas distributor CFD simulation
下载PDF
CFD simulation of an industrial hydrocyclone with Eulerian-Eulerian approach: A case study 被引量:13
8
作者 Safa Raziyeh Soltani Goharrizi Ataallah 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期643-648,共6页
In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copp... In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency. 展开更多
关键词 Hydrocyclone Finite volume method Computational fluid dynamics κ-ε RNC Sarcheshmeh copper complex
下载PDF
Unilateral self-locking mechanism for inchworm in-pipe robot 被引量:2
9
作者 乔晋崴 尚建忠 +2 位作者 陈循 罗自荣 张详坡 《Journal of Central South University》 SCIE EI CAS 2010年第5期1043-1048,共6页
A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The ... A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN. 展开更多
关键词 unilateral self-locking mechanism TRACTION INCHWORM in-pipe robot
下载PDF
Acoustic pressure simulation and experiment design in seafloor mining environment 被引量:2
10
作者 ZHAO Hai-ming WANG Yan-li +2 位作者 HAN Feng-lin JI Ya-qian LUO Bo-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1409-1417,共9页
Since the suspended sediments have severe influence on acoustic radiated field of transducer, it is significant for sonar system to analyze the influence of suspended sediments on acoustic pressure in the seafloor min... Since the suspended sediments have severe influence on acoustic radiated field of transducer, it is significant for sonar system to analyze the influence of suspended sediments on acoustic pressure in the seafloor mining environment. Based on the KZK (Khokhlov-Zabolotkaya-Kuznetsov) equation, the method of sound field analysis in turbid water is proposed. Firstly, based on the analysis of absorption in clean water and viscous absorption of suspended sediments, the sound attenuation coefficient as a function of frequency in the mining environment is calculated. Then, based on the solution of KZK equation in frequency domain, the axial sound pressure of transducer in clear water as well as turbid water is simulated using MATLAB. Simulation results show that the influence of the suspended sediments on the pressure of near field is negligible. With the increase of distance, the axial sound pressures of transducer decay rapidly. Suspended sediments seriously affect the pressure in far-field. To verify the validity of this numerical method, experiment is designed and the axial sound pressure of transducer with a frequency of 200 kHz and a beam width of 7.5~ is measured in simulated mining experiment. The results show that the simulation results agree well with the experiments, and the KZK equation can be used to calculate the sound field in turbid water. 展开更多
关键词 seafloor mining acoustic pressure KZK equation turbid seawater sound attenuation
下载PDF
An Investigation of Error Sources in Computational Fluid Dynamics Modelling of a Co-current Spray Dryer 被引量:1
11
作者 Ireneusz Zbicinski 李选友 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第6期756-761,共6页
The paper is focused on identifying error sources in computational fluid dynamics(CFD) predictions of a spray drying process. Seven groups of drying and atomisation parameters were selected for analysis and 13simulati... The paper is focused on identifying error sources in computational fluid dynamics(CFD) predictions of a spray drying process. Seven groups of drying and atomisation parameters were selected for analysis and 13simulation trials were performed. The theoretical results were compared with experimental data and sensitivity of the simulation results to the analysed factors was determined. The following parameters affecting the accuracy of CFD spray modelling were found: gas turbulence model, particle dispersion, atomising air, initial parameters of atomisation and heat losses to the environment. A major difference in the errors committed during modelling of spray drying process for fine and coarse sprays was observed. 展开更多
关键词 error sources computational fluid dynamics spray drying process
下载PDF
Shock resistance of supercharged boilers through integration with ship structure 被引量:1
12
作者 YAO Xiong-liang FENG Lin-han ZHANG A-man ZHOU Qi-xin 《Journal of Marine Science and Application》 2007年第4期18-26,共9页
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met... The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers. 展开更多
关键词 supercharged boiler numerical simulation dynamic response shock resistance integrationof equipment and ship structure
下载PDF
Characteristics from a hydrodynamic model of a trapezoidal artificial reef 被引量:5
13
作者 姜昭阳 梁振林 +2 位作者 黄六一 刘扬 唐衍力 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第6期1329-1338,共10页
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwellin... Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices;and forces for the reef model were measured by load cell.The results of flume experiments agree well with the numerical data.In addition,the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes,showing a more complicated flow structure than that of a stand-alone reef.Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef.The role of the reef in water flow is to reduce flow velocity and generate turbulence. 展开更多
关键词 trapezoid reef model particle image velocimetry flow field hydrodynamic force drag coefficient
下载PDF
A Potential Flow Based Flight Simulator for an Underwater Glider 被引量:3
14
作者 Surasak Phoemsapthawee Marc Le Boulluec +1 位作者 Jean-Marc Laurens Fran ois Deniset 《Journal of Marine Science and Application》 2013年第1期112-121,共10页
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the ch... Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices. 展开更多
关键词 underwater glider potential flow Newton-Euler equation autonomous underwater vehicles (AUVs) flight simulator
下载PDF
Dynamics optimization of a novel high speed and high precision 3-DOF manipulator
15
作者 兰朋 Lu Nianli +1 位作者 Sun Lining Ding Qingyong 《High Technology Letters》 EI CAS 2006年第1期63-67,共5页
After introducing a novel 3-DOF high speed and high precision manipulator which combines direct driven planar parallel mechanism and linear actuator, ways of increasing its stiffness are studied through dynamics simul... After introducing a novel 3-DOF high speed and high precision manipulator which combines direct driven planar parallel mechanism and linear actuator, ways of increasing its stiffness are studied through dynamics simulation in ADAMS software environment. Design study is carried out by parametric analysis tools to analyze the approximate sensitivity of the design variables, including the effects of parameters of each beam cross section and relative position of linear actuator on model performance. Conclusions are drawn on the appropriate way of dynamics optimization to get a lightweight and small deformation manipulator. A planar parallel mechanism with different cross section is used to an improved manipulator. Resuits of dynamics simulation of the improved system and another unrefined one are compared. The stiffness of them is almost equal, but the mass of the improved one decreases greatly, which illustrates the wavs efficient. 展开更多
关键词 MANIPULATOR ADAMS OPTIMIZATION dynamics simulation
下载PDF
Experimental Study on the Distribution of Velocity and Pressure near a Submarine Pipeline 被引量:2
16
作者 HAN Yan SHI Bing REN Xingyue JING Xiaodong 《Journal of Ocean University of China》 SCIE CAS 2009年第4期404-408,共5页
As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine p... As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection. 展开更多
关键词 submarine pipeline velocity field pressure distribution EXPERIMENT
下载PDF
Complete Modeling for Systems of a Marine Diesel Engine 被引量:6
17
作者 Hassan Moussa Nahim Rafic Younes +1 位作者 Chadi Nohra Mustapha Ouladsine 《Journal of Marine Science and Application》 CSCD 2015年第1期93-104,共12页
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i... This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others). 展开更多
关键词 marine diesel engine engine system cooling system lubrication system air system injection system combustion system emissions system fault diagnosis and estimation (FDI)
下载PDF
Numerical Simulation of a Planing Vessel at High Speed 被引量:15
18
作者 Yumin Su Qingtong Chen +1 位作者 Hailong Shen Wei Lu 《Journal of Marine Science and Application》 2012年第2期178-183,共6页
Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the h... Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds. 展开更多
关键词 planing vessel RANS equations running attitude six degrees of freedom equations VOF
下载PDF
Computational Fluid Dynamics Simulation of Liquid-Phase FCC Diesel Hydrotreating in Tubular Reactor 被引量:1
19
作者 Li Hua Liu Ningqiang +2 位作者 Zeng Zhiyu Zou Ying Wang Jiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期102-110,共9页
The computational fluid dynamics(CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hydrotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were a... The computational fluid dynamics(CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hydrotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were added to the model by user-defined function(UDF), showing the distribution of temperature and content of sulfides, nitrides, bicyclic aromatics and monocyclic aromatics in different parts of the reaction bed. When the pressure was 6.5 MPa, the amount of mixing hydrogen was 0.84%(m), the space velocity was 2 h-1 and the inlet temperature was 633 K, the temperature reached a maximum at a height of 0.15 m, and the range of radial temperature reached its maximum(2.5 K) at a height of 0.15 m. It indicated that the proper ratio of height to diameter of catalyst bed in the tubular reactor was 5-6. The increase of inlet temperature, the mixing hydrogen and the decrease of space velocity led to the decrease in the content of bicyclic aromatics, sulfides and nitrides, and the increase in monocyclic aromatics content, while the high temperature increased. The results were in good agreement with experimental data, indicating to the high accuracy of the model. 展开更多
关键词 FCC diesel tubular liquid-phase hydrogenation computational fluid dynamics(CFD)
下载PDF
Optimal design for split-and-recombine-type flow distributors of microreactors based on blockage detection 被引量:2
20
作者 Lin Wang Xianzuo Kong Yongsheng Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第7期897-903,共7页
In order to increase the productivity of microreactors, the parallelization of the microreactors is required. The performances of flow distributors can affect the product yield and fault detection ability when blockag... In order to increase the productivity of microreactors, the parallelization of the microreactors is required. The performances of flow distributors can affect the product yield and fault detection ability when blockage happens.In this research, an optimal design method to calculate the channel diameters and to determine the flow sensor location is derived based on mass balance and pressure balance models of split-and-recombine-type flow distributors(SRFDs). The model accuracy is verified by experiment data. The proposed method is applied to optimal design of SRFDs under constant flow rate operation conditions. The maximum angle difference between normal and blockage conditions at one sensor to those at the other sensors is set to be the objective function and the uniformity of flow distribution in microreactors under normal condition is also required. The diameters of each pipe in SRFDs are selected as the design variables. Simulated annealing algorithm is used to solve the optimization problem. The effectiveness of the optimal design results is demonstrated by fluid dynamics simulations. The results show that using the optimal channel diameters of SRFDs, the pressure drop in SRFD section is lower than that of the microreactor section. Meanwhile, in the case studies, only a few sensors that are located inside the SRFDs can easily detect the blockage abnormal condition in the parallelized microreactor system. 展开更多
关键词 Optimal designSplit-and-recombine-type flow distributorsMicroreactorsMicrochannelsBlockage
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部