This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice ger...This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.展开更多
The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential mod...The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new...We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new starting vector,such that the occurrence of stagnation be mitigated or the convergence be accelerated.The more appealing utilization of the new method is in conjunction with a harmonic Ritz vector as the starting vector,which is discussed in detail.Numerical experiments are carried out to demonstrate that the proposed procedure can effectively mitigate the occurrence of stagnation due to the presence of small eigenvalues in modulus.展开更多
Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Base...Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed.展开更多
Influences of tip radius and sampling interval on applying atomic force microscopy (AFM) in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters o...Influences of tip radius and sampling interval on applying atomic force microscopy (AFM) in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters of surfaces ranging from amplitude to functional parameters are studied. Numerical and experimental results are in good agreements. The accuracy of estimating tip radius on random rough surface with Ganssian distribution of heights using a blind reconstruction method is also discussed theoretically. It is found that the accuracy is greatly depending on the ratio of actual tip radius to root-mean-square (rms) radius of curvature. To obtain an accurate estimation of tip radius under Gaussian rough surface, the ratio has to be larger than 3/2.展开更多
The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechan...The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.展开更多
The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the t...The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the tower. This paper focuses on the viscous damper which has been adopted for seismic reinforcement of bridges in recent years. The purpose of this study is to improve the seismic performance of steel tower by giving the high damping to the tower. We construct a single tower model considering the influence of transmission line, and then simulate the vibration characteristics and seismic behavior of the tower by the eigenvalue analysis and the dynamic response analysis. The results show that the transmission tower with viscous damper can reduce its own response effectively and drastically. This research concludes that it is necessary to consider the extreme increase of steel tower's response depending on the seismic wave and the collapse of steel tower can be avoided by using the optimum damper in the design of the transmission tower.展开更多
An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the rol...An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.展开更多
With the increasing capacity of wind farm, HVDC technology has become a promising transmission scheme for long distance transportation of large-scale wind power. However oscillation caused by this system will have a g...With the increasing capacity of wind farm, HVDC technology has become a promising transmission scheme for long distance transportation of large-scale wind power. However oscillation caused by this system will have a great influence on the security and stability of power system operation. In this paper, the oscillation of a doubly-fed induction generator(DFIG)-based wind farm interfaced with line commutated converter(LCC) based HVDC is discussed. Low-frequency oscillation and subsynchronous oscillation(SSO) are studied since these two oscillations are the particularly concerned oscillations in the stability study of power system in recent years. The model of a DFIG-based wind farm interconnected with LCC-HVDC is developed. The impact of drive train model's structure and parameters on the oscillation characteristics is analyzed. Eigenvalue and participation factor analysis are used to identify the three main modes, which include controller mode, electromechanical mode, and shaft mode. The effects of DFIG controller's parameters, wind speed and operating conditions of HVDC on those modes are studied. Electromagnetic transient simulations are performed to verify the results of the eigenvalue analysis.展开更多
Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the fin...Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.展开更多
Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eige...Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.展开更多
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(11)1020]~~
文摘This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.
文摘The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
文摘We discuss a variant of restarted GMRES method that allows changes of the restarting vector at each cycle of iterations.The merit of the variant is that previously generated information can be utilized to select a new starting vector,such that the occurrence of stagnation be mitigated or the convergence be accelerated.The more appealing utilization of the new method is in conjunction with a harmonic Ritz vector as the starting vector,which is discussed in detail.Numerical experiments are carried out to demonstrate that the proposed procedure can effectively mitigate the occurrence of stagnation due to the presence of small eigenvalues in modulus.
基金Projects(51374257,50804060)supported by the National Natural Science Foundation of ChinaProject(NCET-09-0844)supported by the New Century Excellent Talent Foundation from MOE of China
文摘Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed.
文摘Influences of tip radius and sampling interval on applying atomic force microscopy (AFM) in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters of surfaces ranging from amplitude to functional parameters are studied. Numerical and experimental results are in good agreements. The accuracy of estimating tip radius on random rough surface with Ganssian distribution of heights using a blind reconstruction method is also discussed theoretically. It is found that the accuracy is greatly depending on the ratio of actual tip radius to root-mean-square (rms) radius of curvature. To obtain an accurate estimation of tip radius under Gaussian rough surface, the ratio has to be larger than 3/2.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708030 and 90815021)
文摘The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.
文摘The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the tower. This paper focuses on the viscous damper which has been adopted for seismic reinforcement of bridges in recent years. The purpose of this study is to improve the seismic performance of steel tower by giving the high damping to the tower. We construct a single tower model considering the influence of transmission line, and then simulate the vibration characteristics and seismic behavior of the tower by the eigenvalue analysis and the dynamic response analysis. The results show that the transmission tower with viscous damper can reduce its own response effectively and drastically. This research concludes that it is necessary to consider the extreme increase of steel tower's response depending on the seismic wave and the collapse of steel tower can be avoided by using the optimum damper in the design of the transmission tower.
基金Project (No. 10372090) supported by the National Natural ScienceFoundation of China
文摘An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.
基金supported by the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2011AA05A301)"111"Project of China(Grant No.B08013)
文摘With the increasing capacity of wind farm, HVDC technology has become a promising transmission scheme for long distance transportation of large-scale wind power. However oscillation caused by this system will have a great influence on the security and stability of power system operation. In this paper, the oscillation of a doubly-fed induction generator(DFIG)-based wind farm interfaced with line commutated converter(LCC) based HVDC is discussed. Low-frequency oscillation and subsynchronous oscillation(SSO) are studied since these two oscillations are the particularly concerned oscillations in the stability study of power system in recent years. The model of a DFIG-based wind farm interconnected with LCC-HVDC is developed. The impact of drive train model's structure and parameters on the oscillation characteristics is analyzed. Eigenvalue and participation factor analysis are used to identify the three main modes, which include controller mode, electromechanical mode, and shaft mode. The effects of DFIG controller's parameters, wind speed and operating conditions of HVDC on those modes are studied. Electromagnetic transient simulations are performed to verify the results of the eigenvalue analysis.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB845302)the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant No.11472290)
文摘Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.
基金supported in part by the National Science Foundation of United States(NSF)(Grant No.0844707)in part by the International S&T Cooperation Program of China(ISTCP)(Grant No.2013DFA60930)
文摘Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.