Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is s...Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is supposed that rock stresses will recovery gradually with time and can be measured by embedding transducers into the borehole. In order to explore the applicability and accuracy of this method, analytical solutions are developed for stress measurement with the rheological stress recovery method in a viscoelastic surrounding rock, the rheological properties of which are depicted as both the Burger's model and a 3-parameter solid model. In such conditions, explicit analytical expressions for predicting time-dependent pressures on the transducer are derived. A parametric analysis is then adopted to investigate the influences of the grout solidification time and the mechanical properties of the grout layer. The results indicate that this method is suitable for stress measurement in deep soft rock, the characteristics of which are soft, fractured and subjected to high geo-stress.展开更多
The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure...The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.展开更多
Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction p...Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction pattern of a graph is formed on the back focal plane when a laser beam is directed on the graph lying on the front foeal plane ; the Fourier spectra of the graph is also subjected to change during the deformation of the graph. Through analyzing the change of Fourier spectra the deformation of the graph can be obtained. A few years ago,based on the above principles the authors proposed a new technique of strain measurement by laser spectral analysis. Demonstration and discussion will be made in detail in this paper.展开更多
Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improvi...Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improving this process by conducting a separation once full conversion has been achieved. In this work, referring to a common DCP feed used in industry, the reaction performance of mixed DCP isomers with Na OH in the microchemical system on various time scales was investigated. The operating window for achieving high conversion and selectivity was on a time scale of seconds, while the side reactions normally occurred on a time scale of minutes. Plenty of Cl-ions together with a high temperature were proved to be critical factors for ECH hydrolysis.A kinetic study of alkaline mediated ECH hydrolysis was performed and the requirements for an improved ECH synthesis were proposed by combining quantitative analysis using a simpli fied reaction model with experimental results on the time scale of minutes. Compared with the conventional distillation process, this new strategy for ECH synthesis exploited microchemical system and decoupled the reaction and separation with potentials of higher productivity and better reliability in scaling up.展开更多
基金supported by the National Basic Research Program of China (No.2014CB046904)the National Natural Science Foundation of China (Nos.41130742 and 11302242)
文摘Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is supposed that rock stresses will recovery gradually with time and can be measured by embedding transducers into the borehole. In order to explore the applicability and accuracy of this method, analytical solutions are developed for stress measurement with the rheological stress recovery method in a viscoelastic surrounding rock, the rheological properties of which are depicted as both the Burger's model and a 3-parameter solid model. In such conditions, explicit analytical expressions for predicting time-dependent pressures on the transducer are derived. A parametric analysis is then adopted to investigate the influences of the grout solidification time and the mechanical properties of the grout layer. The results indicate that this method is suitable for stress measurement in deep soft rock, the characteristics of which are soft, fractured and subjected to high geo-stress.
文摘The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.
文摘Modern opticai theory has shown that the far field or Fraunbofer diffraction equipment is identical to the Fourier spectral analyzer. In the Fourier speetral analyzer the Fourier spectra or the Fraunhofer diffaction pattern of a graph is formed on the back focal plane when a laser beam is directed on the graph lying on the front foeal plane ; the Fourier spectra of the graph is also subjected to change during the deformation of the graph. Through analyzing the change of Fourier spectra the deformation of the graph can be obtained. A few years ago,based on the above principles the authors proposed a new technique of strain measurement by laser spectral analysis. Demonstration and discussion will be made in detail in this paper.
基金Supported by the National Natural Science Foundation of China(21036002,21176136)the National Science and Technology Support Program of China(2011BAC06B01)
文摘Synthesizing epichlorohydrin(ECH) from dichloropropanol(DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improving this process by conducting a separation once full conversion has been achieved. In this work, referring to a common DCP feed used in industry, the reaction performance of mixed DCP isomers with Na OH in the microchemical system on various time scales was investigated. The operating window for achieving high conversion and selectivity was on a time scale of seconds, while the side reactions normally occurred on a time scale of minutes. Plenty of Cl-ions together with a high temperature were proved to be critical factors for ECH hydrolysis.A kinetic study of alkaline mediated ECH hydrolysis was performed and the requirements for an improved ECH synthesis were proposed by combining quantitative analysis using a simpli fied reaction model with experimental results on the time scale of minutes. Compared with the conventional distillation process, this new strategy for ECH synthesis exploited microchemical system and decoupled the reaction and separation with potentials of higher productivity and better reliability in scaling up.