This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructe...This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructed by curtains to avoid glare, despite the daylighting and the exterior view. The consequences are obstructed outside view, poor daylight quality and dependency on artificial lighting. This paper assesses the impact on available daylight using parametric analysis based on daylighting dynamic computer simulations using Grasshopper and Daysim software, combining WWR (window-to-wall ratio) (40% and 80%), SVF (sky view factor) (small and large) and occupant behavior (active, intermediate and passive users). The user patterns are based in an office buildings survey that identifies preferences concerning daylight use and control of shading devices. The daylight performance criteria combine UDI (useful daylight illuminance) (500-5,000 lux) and illuminance uniformity distribution. Results confirm the impact of occupant behavior on daylighting performance. The optimum combination of external shading devices, high SVF and high window size results in a useful daylighting for 1/3 of the time for passive users and 2/3 for active users.展开更多
文摘This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructed by curtains to avoid glare, despite the daylighting and the exterior view. The consequences are obstructed outside view, poor daylight quality and dependency on artificial lighting. This paper assesses the impact on available daylight using parametric analysis based on daylighting dynamic computer simulations using Grasshopper and Daysim software, combining WWR (window-to-wall ratio) (40% and 80%), SVF (sky view factor) (small and large) and occupant behavior (active, intermediate and passive users). The user patterns are based in an office buildings survey that identifies preferences concerning daylight use and control of shading devices. The daylight performance criteria combine UDI (useful daylight illuminance) (500-5,000 lux) and illuminance uniformity distribution. Results confirm the impact of occupant behavior on daylighting performance. The optimum combination of external shading devices, high SVF and high window size results in a useful daylighting for 1/3 of the time for passive users and 2/3 for active users.