A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gol...A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.展开更多
Utilization of tidal current is becoming a focus of marine energy research and development field. In this paper, a new type of tidal current power generating device which was called flexible blade turbine was put forw...Utilization of tidal current is becoming a focus of marine energy research and development field. In this paper, a new type of tidal current power generating device which was called flexible blade turbine was put forward. A scale model testing was carried out, and results show that the models performed as expected with good hydrodynamic characteristics. Based on analysis of the results, a scale model turbine with a rated power of 5 kW was constructed, which was an optimal scheme of the flexible blade turbine having higher coefficient of power and power generation capacity. Sea trials were carried out in the Zhaitang Island Channel to evaluate the performance of the turbine. Results show that the turbine performed well, generating the power predicted.展开更多
The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the ...The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.展开更多
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef...Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.展开更多
The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The ...The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.展开更多
OBJECTIVE: To explore the concept and norm of fracture healing with osteopathy in traditional Mongolian medicine (TMM). METHODS: Based on the correspondence between man and the universe (including psychosomatic integr...OBJECTIVE: To explore the concept and norm of fracture healing with osteopathy in traditional Mongolian medicine (TMM). METHODS: Based on the correspondence between man and the universe (including psychosomatic integration) in fracture healing with osteopathy in TMM, we used modern physio-psychological and biomechanical principles and methods to probe the integrated, dynamic and functional characteristics of fracture healing. RESULTS: Based on the integration of limbs and the body, unification of the body and function and harmony of man and nature (including psychoso-matic integration), fracture healing with osteopathy in TMM comprises the concept of natural functional healing of fractures, and follows the norm of considering physiological healing and psychological function as well as limb healing and motor function. CONCLUSION: Fracture healing with osteopathy in TMM is characterized by a lack of trauma without future complications. This therapy makes the concept of fracture healing develop in the direction of humanity, behaviorism and integration.展开更多
As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation...As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation is usually referenced in the evaluation of pulmonary status and assessment of respiratory therapy. In order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, in this paper, a new mathematical model of mechanical ventilation system was set up. Furthermore, a prototype mechanical ventilation system for an artificial simulating lung was designed and experimentally studied. Lastly, in order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, the air flow dynamics of the mechanical ventilation system was illustrated through simulation and experimental studies. The study can be helpful to the optimization of the mechanical ventilation system.展开更多
Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goa...Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines.To that end,we designed two rotors:Rotor A,based on the rotor optimum design method from the blade element momentum theory,and Rotor B,in which the chord length of the tip is extended and the chord length distribution is linearized.We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis.Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A,but the maximum output coefficient increased by approximately 38.7%.Rotors A and B experienced a large-scale separation on the hub side,which extended to the mean in Rotor A.This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A.展开更多
文摘A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.
基金the National Natural Science Foundation of China(No. 50979101)Shandong Province Natural Science Foundation (No. Q2008F05)
文摘Utilization of tidal current is becoming a focus of marine energy research and development field. In this paper, a new type of tidal current power generating device which was called flexible blade turbine was put forward. A scale model testing was carried out, and results show that the models performed as expected with good hydrodynamic characteristics. Based on analysis of the results, a scale model turbine with a rated power of 5 kW was constructed, which was an optimal scheme of the flexible blade turbine having higher coefficient of power and power generation capacity. Sea trials were carried out in the Zhaitang Island Channel to evaluate the performance of the turbine. Results show that the turbine performed well, generating the power predicted.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20161537)National Science Key Laboratory Foundation(No.6142220180202)+1 种基金Rotor Aerodynamics Key Laboratory Foundation (No.RAL20180303-1)National Natural Science Foundation of China(No.11502105).
文摘The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Natural Science Foundation of China(No.41571276)+1 种基金Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-JBYW-2016-33)
文摘Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.
文摘The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.
基金Supported by the Project of the 2009 State Natural Science Fund (No. 30960518)a Project of the 2012 State Natural Science Fund (No. 81260513)a Major Project of the Scitech Plan of the Inner Mongolian Autonomous Region(2010-2012)
文摘OBJECTIVE: To explore the concept and norm of fracture healing with osteopathy in traditional Mongolian medicine (TMM). METHODS: Based on the correspondence between man and the universe (including psychosomatic integration) in fracture healing with osteopathy in TMM, we used modern physio-psychological and biomechanical principles and methods to probe the integrated, dynamic and functional characteristics of fracture healing. RESULTS: Based on the integration of limbs and the body, unification of the body and function and harmony of man and nature (including psychoso-matic integration), fracture healing with osteopathy in TMM comprises the concept of natural functional healing of fractures, and follows the norm of considering physiological healing and psychological function as well as limb healing and motor function. CONCLUSION: Fracture healing with osteopathy in TMM is characterized by a lack of trauma without future complications. This therapy makes the concept of fracture healing develop in the direction of humanity, behaviorism and integration.
基金supported by the National Natural Science Foundation of China(Grant No.51575020)
文摘As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation is usually referenced in the evaluation of pulmonary status and assessment of respiratory therapy. In order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, in this paper, a new mathematical model of mechanical ventilation system was set up. Furthermore, a prototype mechanical ventilation system for an artificial simulating lung was designed and experimentally studied. Lastly, in order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, the air flow dynamics of the mechanical ventilation system was illustrated through simulation and experimental studies. The study can be helpful to the optimization of the mechanical ventilation system.
文摘Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines.To that end,we designed two rotors:Rotor A,based on the rotor optimum design method from the blade element momentum theory,and Rotor B,in which the chord length of the tip is extended and the chord length distribution is linearized.We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis.Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A,but the maximum output coefficient increased by approximately 38.7%.Rotors A and B experienced a large-scale separation on the hub side,which extended to the mean in Rotor A.This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A.