This paper presents the development of a methodology for calculating sizing electric micro sources of power generation using TEG (thermoelectric modules) to capture energy industrial process waste. Since the thermoe...This paper presents the development of a methodology for calculating sizing electric micro sources of power generation using TEG (thermoelectric modules) to capture energy industrial process waste. Since the thermoelectric modules are able to convert a temperature gradient directly into electricity and still occupy a small space, and have no vibration or noise during operation. Furthermore, the cogeneration using thermoelectric modules is totally clean and reuses part of the residual thermal energy to generate power, or improve the overall yield of the process and avoid the emission of gases to the environment. Therefore, this research contributes to the development of a green energy to numerical modeling for the design and dimensioning of micro-sources of electric power generation from performance curves and predetermined temperature gradients industrial processes. The result is an effective methodology for the design and conditioning the voltage level and power of micro allowing the size of the electrical quickly and securely for many industrial applications, varying the types of modules used area, voltage and power generated.展开更多
文摘This paper presents the development of a methodology for calculating sizing electric micro sources of power generation using TEG (thermoelectric modules) to capture energy industrial process waste. Since the thermoelectric modules are able to convert a temperature gradient directly into electricity and still occupy a small space, and have no vibration or noise during operation. Furthermore, the cogeneration using thermoelectric modules is totally clean and reuses part of the residual thermal energy to generate power, or improve the overall yield of the process and avoid the emission of gases to the environment. Therefore, this research contributes to the development of a green energy to numerical modeling for the design and dimensioning of micro-sources of electric power generation from performance curves and predetermined temperature gradients industrial processes. The result is an effective methodology for the design and conditioning the voltage level and power of micro allowing the size of the electrical quickly and securely for many industrial applications, varying the types of modules used area, voltage and power generated.