This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for volta...The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for voltage sag that appears in its feeder (voltage control mode), the other inverters pump the required power into the dc bus (power control mode). Each inverter will have both voltage and power controllers; only one controller is in use during the abnormal conditions according to its feeder state. The voltage controller uses one of the dynamic voltage restoration techniques. In this paper, the in-phase technique is applied and two types of loads are considered (constant impedance and three phase induction motor). Since the voltage restoration process may need real power injection into the distribution system, the power controller injects this power via voltage injection. This voltage injection is simulated by voltage drop across series virtual impedance. A new scheme is proposed to select the impedance value. The impedance value is selected such that the power consumed by this impedance represents the required power to be transferred without perturbing the load voltage. The performance of this system is also studied during voltage swell. A scheme for operation of multi-feeder IDVR system is proposed in this paper. Simulation results substantiate the proposed concept.展开更多
This paper presents a mathematical model of three-level voltage PWM rectifier,and derives a power control model from the theory of instantaneous power.In the vector-space,the influences on instantaneous power exercise...This paper presents a mathematical model of three-level voltage PWM rectifier,and derives a power control model from the theory of instantaneous power.In the vector-space,the influences on instantaneous power exercised by all the switching vectors are studied and illustrated separately,then a direct power control(DPC) scheme for three-level PWM rectifier which uses multistage band hysteresis comparator is proposed,and a novel switching table is designed.Meanwhile,the neutralpoint voltage unbalance is inhibited by selecting the redundancy switching states of small voltage vectors.Simulation and experimental results show that the proposed strategy can not only stabilize the DC bus voltage but also realize the unity power factor operation and the balance of neutral-point voltage.Moreover,the proposed method can improve the performance of the three-level rectifier.展开更多
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘The inter-line dynamic voltage restorer (IDVR) consists of several voltage source inverters connected to different independent distribution feeders with common dc bus. When one of the inverters compensates for voltage sag that appears in its feeder (voltage control mode), the other inverters pump the required power into the dc bus (power control mode). Each inverter will have both voltage and power controllers; only one controller is in use during the abnormal conditions according to its feeder state. The voltage controller uses one of the dynamic voltage restoration techniques. In this paper, the in-phase technique is applied and two types of loads are considered (constant impedance and three phase induction motor). Since the voltage restoration process may need real power injection into the distribution system, the power controller injects this power via voltage injection. This voltage injection is simulated by voltage drop across series virtual impedance. A new scheme is proposed to select the impedance value. The impedance value is selected such that the power consumed by this impedance represents the required power to be transferred without perturbing the load voltage. The performance of this system is also studied during voltage swell. A scheme for operation of multi-feeder IDVR system is proposed in this paper. Simulation results substantiate the proposed concept.
基金supported by the Key Program of National Natural Science Foundation of China (Grant No. 51037004)the National Natural Science Foundation of China (Grant No. 51077097)the Key Technologies Research and Development Program of Tianjin (Grant No.11ZCKFGX03300)
文摘This paper presents a mathematical model of three-level voltage PWM rectifier,and derives a power control model from the theory of instantaneous power.In the vector-space,the influences on instantaneous power exercised by all the switching vectors are studied and illustrated separately,then a direct power control(DPC) scheme for three-level PWM rectifier which uses multistage band hysteresis comparator is proposed,and a novel switching table is designed.Meanwhile,the neutralpoint voltage unbalance is inhibited by selecting the redundancy switching states of small voltage vectors.Simulation and experimental results show that the proposed strategy can not only stabilize the DC bus voltage but also realize the unity power factor operation and the balance of neutral-point voltage.Moreover,the proposed method can improve the performance of the three-level rectifier.