In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from t...In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power trans...As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.展开更多
The high peak-to-average power ration (PAPR) values of optical orthogond frequency division multiplexing (OFDM) signal limit the system nonlinear tolerance (NLT). In this paper, a novel method based on Hadamard precod...The high peak-to-average power ration (PAPR) values of optical orthogond frequency division multiplexing (OFDM) signal limit the system nonlinear tolerance (NLT). In this paper, a novel method based on Hadamard precoding is proposed to reduce the peak-to-average power ratio in optical direct detection OFDM system. The proposed scheme is successfully applied to an experimental system of optical direct-detection OFDM signal transmission through fiber. In this experiment, the 2.5 Gbit/s binary phase shift keying (BPSK) optical OFDM signals with Hadamard precoding are generated and transmitted though a single mode fiber. The experimental results show that the proposed scheme can reduce PAPR by almost 1.5 dB. Meantime the received sensitivity is improved by 2 dB with 100 km fiber transmission compared with that of an ordinary optical direct detection OFDM system.展开更多
基金supported in part by the National Natural Science Foundation of China(No.61401330,No.61371127)
文摘In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
文摘As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.
基金supported by the National High-tech Research and Development Program of China (No.2007AA01Z263)the Natural Science Foundation of Hunan Proviuce of China (No.06JJ50108)the Open Fund of Key Laboratory of Optical Communication and Lightwave Technologies of Education Ministry of China at Beijing University of Posts and Telecommunications
文摘The high peak-to-average power ration (PAPR) values of optical orthogond frequency division multiplexing (OFDM) signal limit the system nonlinear tolerance (NLT). In this paper, a novel method based on Hadamard precoding is proposed to reduce the peak-to-average power ratio in optical direct detection OFDM system. The proposed scheme is successfully applied to an experimental system of optical direct-detection OFDM signal transmission through fiber. In this experiment, the 2.5 Gbit/s binary phase shift keying (BPSK) optical OFDM signals with Hadamard precoding are generated and transmitted though a single mode fiber. The experimental results show that the proposed scheme can reduce PAPR by almost 1.5 dB. Meantime the received sensitivity is improved by 2 dB with 100 km fiber transmission compared with that of an ordinary optical direct detection OFDM system.