针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨...针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。展开更多
针对低信噪比条件下认知无线电频谱感知问题,提出了一种基于功率谱熵的频谱检测算法。在分析主用户信号空闲与占用两种不同条件下观测信号功率谱熵差异的基础上,将其作为检验统计量,并确定了相应的判决门限,以实现对主用户信号频谱是否...针对低信噪比条件下认知无线电频谱感知问题,提出了一种基于功率谱熵的频谱检测算法。在分析主用户信号空闲与占用两种不同条件下观测信号功率谱熵差异的基础上,将其作为检验统计量,并确定了相应的判决门限,以实现对主用户信号频谱是否空闲的判决。计算机仿真结果表明,本算法无需信号的先验信息,可在较低信噪比条件下实现对常用调制信号的频谱感知,与盒维数频谱感知方法相比,检测性能约有8 d B的改进。展开更多
文摘针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。
文摘针对低信噪比条件下认知无线电频谱感知问题,提出了一种基于功率谱熵的频谱检测算法。在分析主用户信号空闲与占用两种不同条件下观测信号功率谱熵差异的基础上,将其作为检验统计量,并确定了相应的判决门限,以实现对主用户信号频谱是否空闲的判决。计算机仿真结果表明,本算法无需信号的先验信息,可在较低信噪比条件下实现对常用调制信号的频谱感知,与盒维数频谱感知方法相比,检测性能约有8 d B的改进。