PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circui...PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.展开更多
Power analysis is a non-invaslve attack against cryptographic hardware, which effectively exploits runtime power consumption characteristics of circuits. This paper proposes a new power model which combines Hamming Di...Power analysis is a non-invaslve attack against cryptographic hardware, which effectively exploits runtime power consumption characteristics of circuits. This paper proposes a new power model which combines Hamming Distance model and the model based on the template value of power consumption in combinational logic circuit. The new model can describe the power consumption characteristics of sequential logic circuits and those of combinational logic as well. The new model can be used to improve the existing power analysis methods and detect the information leakage of power consumption. Experimental results show that, compared to CPA(Correlation Power Analysis) method, our proposed attack which adopt the combinational model is more efficient in terms of the number of required power traces.展开更多
In this paper, the energy-efficient power control problem in cognitive radio (CR) networks is studied not only to provide energy-efficient transmission, but also to guarantee the normal operation of primary users (...In this paper, the energy-efficient power control problem in cognitive radio (CR) networks is studied not only to provide energy-efficient transmission, but also to guarantee the normal operation of primary users (PUs). Moreover, the static energy-efficient power control (SEPC) algorithm is proposed in static scenario to maximize the capacity of secondary users (SUs) and to reduce the power consumption according to the interference from PU to SU. Furthermore, based on the analysis of PU's dynamic feature with Markov chain and SEPC algorithm,the dynamic energy-efficient power control (DEPC) algorithm is proposed taking into account the probability of detection and false alarm caused by sensing errors. Extensive simulation results show that the performance of the proposed algorithms is significantly improved compared with the existing algorithm.展开更多
文摘PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.
基金supported by Major State Basic Research Development Program(No. 2013CB338004)National Natural Science Foundation of China(No.61402286, 61202372,61202371,61309021)National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2014ZX01032401-001)
文摘Power analysis is a non-invaslve attack against cryptographic hardware, which effectively exploits runtime power consumption characteristics of circuits. This paper proposes a new power model which combines Hamming Distance model and the model based on the template value of power consumption in combinational logic circuit. The new model can describe the power consumption characteristics of sequential logic circuits and those of combinational logic as well. The new model can be used to improve the existing power analysis methods and detect the information leakage of power consumption. Experimental results show that, compared to CPA(Correlation Power Analysis) method, our proposed attack which adopt the combinational model is more efficient in terms of the number of required power traces.
基金the National Natural Science Foundation of China,Beijing Municipal Natural Science Foundation,the Key Project of Ministry of Industry and Information Technology,the National Youth Science Foundation
文摘In this paper, the energy-efficient power control problem in cognitive radio (CR) networks is studied not only to provide energy-efficient transmission, but also to guarantee the normal operation of primary users (PUs). Moreover, the static energy-efficient power control (SEPC) algorithm is proposed in static scenario to maximize the capacity of secondary users (SUs) and to reduce the power consumption according to the interference from PU to SU. Furthermore, based on the analysis of PU's dynamic feature with Markov chain and SEPC algorithm,the dynamic energy-efficient power control (DEPC) algorithm is proposed taking into account the probability of detection and false alarm caused by sensing errors. Extensive simulation results show that the performance of the proposed algorithms is significantly improved compared with the existing algorithm.