将LLC谐振变流器用于车载充电机(On-Board Charger,OBC)的高频隔离DC/DC。全负载范围内,LLC谐振变流器的原边开关器件实现零电压开关(Zero Voltage Switching,ZVS),副边整流二极管实现零电流开关(Zero Current Switching,ZCS)。考虑输...将LLC谐振变流器用于车载充电机(On-Board Charger,OBC)的高频隔离DC/DC。全负载范围内,LLC谐振变流器的原边开关器件实现零电压开关(Zero Voltage Switching,ZVS),副边整流二极管实现零电流开关(Zero Current Switching,ZCS)。考虑输出电压变化时LLC谐振变流器的品质因数也随之变化,以轻载和重载的品质因数为边界条件,计算出LLC谐振变流器的最小工作频率,避免了传统基波近似法不能得到LLC谐振变流器最小工作频率的缺点并为LLC谐振变流器的磁件设计提供理论支持。最终研制了一台3.3k W OBC样机,其功率密度达到1.05 k W/L,整机峰值效率达到95.01%,LLC谐振变流器的峰值效率达到97.4%。展开更多
A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power con...A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power consumption, extremely low THD,easy compensation, and good driving capability. With 1st silicon 0.25μm 1P4M CMOS technology and a 3V power supply,the output range can be 4Vpp when driving an 8Ω‖ 300pF load, while its power dissipation is less than 3mW. The THD is better than 0. 003% at 1kHz. A new over-current protection circuit, which can effectively protect the power output circuits on the chip, is also demonstrated.展开更多
介绍一种无桥有源功率因数矫正(Active Power Factor Correction,APFC)的关键控制方法、无桥APFC较有桥APFC的优势、无桥APFC的控制原理。关键控制方法中重点讲述了电流环路和电压环路控制的实现方法与电流环路前馈控制方法,同时阐述了...介绍一种无桥有源功率因数矫正(Active Power Factor Correction,APFC)的关键控制方法、无桥APFC较有桥APFC的优势、无桥APFC的控制原理。关键控制方法中重点讲述了电流环路和电压环路控制的实现方法与电流环路前馈控制方法,同时阐述了使用同步整流的作用、软件实现方法以及实验结果。展开更多
文摘将LLC谐振变流器用于车载充电机(On-Board Charger,OBC)的高频隔离DC/DC。全负载范围内,LLC谐振变流器的原边开关器件实现零电压开关(Zero Voltage Switching,ZVS),副边整流二极管实现零电流开关(Zero Current Switching,ZCS)。考虑输出电压变化时LLC谐振变流器的品质因数也随之变化,以轻载和重载的品质因数为边界条件,计算出LLC谐振变流器的最小工作频率,避免了传统基波近似法不能得到LLC谐振变流器最小工作频率的缺点并为LLC谐振变流器的磁件设计提供理论支持。最终研制了一台3.3k W OBC样机,其功率密度达到1.05 k W/L,整机峰值效率达到95.01%,LLC谐振变流器的峰值效率达到97.4%。
文摘A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power consumption, extremely low THD,easy compensation, and good driving capability. With 1st silicon 0.25μm 1P4M CMOS technology and a 3V power supply,the output range can be 4Vpp when driving an 8Ω‖ 300pF load, while its power dissipation is less than 3mW. The THD is better than 0. 003% at 1kHz. A new over-current protection circuit, which can effectively protect the power output circuits on the chip, is also demonstrated.
文摘介绍一种无桥有源功率因数矫正(Active Power Factor Correction,APFC)的关键控制方法、无桥APFC较有桥APFC的优势、无桥APFC的控制原理。关键控制方法中重点讲述了电流环路和电压环路控制的实现方法与电流环路前馈控制方法,同时阐述了使用同步整流的作用、软件实现方法以及实验结果。