期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于数据集蒸馏的光伏发电功率超短期预测 被引量:2
1
作者 郑珂 王丽婕 +1 位作者 郝颖 王勃 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5196-5207,I0015,共13页
云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预... 云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预测模型。首先,基于待测场站上方的历史云图,采用Farneback光流法预测出云图;然后,根据卫星云分类标签数据建立各类云的样本库,利用数据集蒸馏算法训练样本库得到云类判别图,将预测云图与云类判别图匹配计算,获得云类聚合匹配特征;最后,利用上述特征、云量特征以及数值天气预报数据建立长短期记忆网络模型,对光伏发电功率进行超短期预测。利用某光伏电站数据进行验证,结果显示,该文所提模型能准确描述云层的各项特征,有效提升光伏功率预测精度。 展开更多
关键词 数据集蒸馏 卫星云图 云分类 光流法 短期光伏功率预测
下载PDF
基于马氏距离相似度量的光伏功率超短期预测方法的研究 被引量:14
2
作者 杨茂 冯帆 《可再生能源》 CAS CSCD 北大核心 2021年第2期175-181,共7页
提高光伏功率超短期预测精度可有效减小光伏发电并网对电力系统稳定性的影响。文章提出了一种基于马氏距离相似度量的光伏功率超短期预测方法。首先,文章采用Elkan K-means聚类分析方法对天气类型进行划分,并通过计算各气象因素与光伏... 提高光伏功率超短期预测精度可有效减小光伏发电并网对电力系统稳定性的影响。文章提出了一种基于马氏距离相似度量的光伏功率超短期预测方法。首先,文章采用Elkan K-means聚类分析方法对天气类型进行划分,并通过计算各气象因素与光伏电站输出功率间的灰色关联度,选出不同天气类型下影响光伏功率的主要气象因素;然后,根据样本日和预测日间主要气象因素的马氏距离选择若干个相似日,并将相似日的光伏功率作为预测模型的训练集,对预测日的光伏功率进行超短期预测。模拟结果表明:基于马氏距离相似度量得到的相似日光伏功率和预测日的相似度较高;将基于马氏距离相似度量得到的相似日光伏功率作为预测模型的训练集,可以提高光伏功率超短期预测精度,为光伏功率预测领域提供了有效的方法。 展开更多
关键词 光伏功率超短期预测 聚类分析 灰色关联度 马氏距离 相似日
下载PDF
基于VMD-IGWO-SVM的风电功率超短期预测研究 被引量:6
3
作者 沈岳峰 都洪基 《电工电气》 2019年第1期20-25,共6页
为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分... 为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分量分别建立支持向量机预测模型,并采用改进灰狼算法对其参数寻优,将各分量的预测值叠加重构得到最终的预测值。实例仿真表明,所提的组合预测模型与其他预测模型相比具有更高的预测精度。 展开更多
关键词 风电功率超短期预测 变分模态分解 改进灰狼算法 支持向量机 预测精度
下载PDF
基于网格气象数据的LLE-LSTM小水电发电功率超短期预测 被引量:2
4
作者 许布哲 李黄强 +4 位作者 舒征宇 姚钦 李世春 胡尧 陈明欣 《水电能源科学》 北大核心 2022年第11期212-216,共5页
考虑小水电区域内降雨量时间分布及空间分布的影响,以网格气象数据为基础,提出LLE-LSTM小水电发电功率超短期预测方法。首先利用相关性分析筛选空间上与小水电发电功率相关的网格区域,而后引入局部线性嵌入算法(LLE)对网格降雨数据进一... 考虑小水电区域内降雨量时间分布及空间分布的影响,以网格气象数据为基础,提出LLE-LSTM小水电发电功率超短期预测方法。首先利用相关性分析筛选空间上与小水电发电功率相关的网格区域,而后引入局部线性嵌入算法(LLE)对网格降雨数据进一步降维;最后将其作为输入代入到长短记忆神经网络(LSTM)训练,构建小水电发电功率的超短期预测模型。利用所提方法对湖北省某地区小水电发电功率数据进行仿真检验,结果表明该方法能够较好表征区域内降雨量空间分布对小水电发电功率的影响,且有效避免了因网格气象数据维度过高导致的过拟合问题,显著提高了小水电发电功率超短期预测精度。 展开更多
关键词 小水电 发电功率超短期预测 网格气象数据 降雨量时空分布 局部线性嵌入 长短记忆神经网络
下载PDF
基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略 被引量:7
5
作者 崔杨 王议坚 +2 位作者 黄彦浩 王铮 王茂春 《中国电机工程学报》 EI CSCD 北大核心 2023年第4期1334-1346,共13页
以风电为代表的新能源发电装机容量占比逐年增长,精确的风电功率超短期预测对提高风能利用率、助力双碳实现有重要意义。该文提出一种基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略,从特征筛选、模型优化、策略改良... 以风电为代表的新能源发电装机容量占比逐年增长,精确的风电功率超短期预测对提高风能利用率、助力双碳实现有重要意义。该文提出一种基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略,从特征筛选、模型优化、策略改良3个角度全面提高预测准确性与模型智能性。首先,采用动态权重特征选择算法、孤立森林算法以及最邻近节点算法筛选并处理数据,便于预测模型更好把握其中特征;其次,对长短期记忆(long short term memory,LSTM)基模型多角度优化,并根据基模型中不同信息的特点,构建关于LSTM的多元注意力框架(Multielement-attention-LSTM),将此框架用于对LightGBM集成学习模型的引导,并通过多种可视化方法提高了模型可解释性;最后,将Bland-Altman应用于模型输出与实际风电出力一致性检验,在预测数据与实际数据交互的基础上实现训练–预测闭环机制。仿真结果表明,所构建的Multielement-attention-LSTM框架具有提高模型预测精度的作用,且闭环更新机制具备合理性。 展开更多
关键词 多元注意力 引导式监督学习 短期功率预测 闭环机制
下载PDF
考虑功率数据相关性的风电功率超短期预测 被引量:3
6
作者 耿寒 孙峰 +4 位作者 杨海威 杨祥红 张益霖 张菁 高扬 《吉林电力》 2019年第1期18-21,共4页
通过对风电场内部不同区域风电功率序列的相关性进行分析,确定风电机组的空间差异性对风电功率预测产生影响,提出一种提高风电功率超短期预测效果的分层叠加预测方法。基于东北某风电场实测数据的算例分析表明,相同的风电功率预测方法,... 通过对风电场内部不同区域风电功率序列的相关性进行分析,确定风电机组的空间差异性对风电功率预测产生影响,提出一种提高风电功率超短期预测效果的分层叠加预测方法。基于东北某风电场实测数据的算例分析表明,相同的风电功率预测方法,使用分层叠加法预测比整场预测误差小,更能提高风电功率超短期预测效果。 展开更多
关键词 风力发电 功率超短期预测 相关性 空间差异性
下载PDF
基于双向LSTM的小水电发电功率超短期预测
7
作者 王磊 《中国科技期刊数据库 工业A》 2023年第6期126-129,共4页
小水电发电功率的精准预测能够为发电计划的制定提供重要依据,缓解小水电窝电弃水现象,提高清洁能源的利用率。根据小水电发电功率的“时滞性”及“累积性”等特点,提出了基于双向LSTM的小水电发电功率超短期预测模型。将小水电历史发... 小水电发电功率的精准预测能够为发电计划的制定提供重要依据,缓解小水电窝电弃水现象,提高清洁能源的利用率。根据小水电发电功率的“时滞性”及“累积性”等特点,提出了基于双向LSTM的小水电发电功率超短期预测模型。将小水电历史发电功率及降雨量代入双向LSTM神经网络模型进行训练及预测,得到考虑过去及未来两个方向时间序列信息的小水电发电功率超短期预测模型。实例仿真表明,该方法具备较高的预测准确率及先进性。 展开更多
关键词 小水电 发电功率超短期预测 双向LSTM神经网络
下载PDF
基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
8
作者 陈烨烨 李瑶 李捍东 《分布式能源》 2024年第2期1-7,共7页
为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电... 为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电功率预测模型。首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果。使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比。结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差。 展开更多
关键词 风电功率超短期预测 变分模态分解(VMD) 排列熵(PE) 多层双向长短时记忆(MultiBiLSTM)
下载PDF
基于DCGCN模型的海上风电场超短期功率预测
9
作者 黄玲玲 石孝华 +2 位作者 符杨 刘阳 应飞祥 《电力系统自动化》 EI CSCD 北大核心 2024年第15期64-72,共9页
图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于... 图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于双通道图卷积网络(DCGCN)的海上风电场超短期功率预测模型。首先,建立以理论功率曲线为基准的机组状态指标模型,定量表征机组状态变化对其发电能力的影响;其次,构建海上风电场图拓扑,建立基于风速和状态邻接矩阵的风电场各机组捕获的风速与机组状态信息的关联关系模型;最后,建立基于DCGCN的风电场超短期功率预测方法。算例结果表明,所提模型有助于提高风电场功率预测模型的训练效率和预测精度。 展开更多
关键词 短期功率预测 图卷积网络 海上风电场 功率曲线 双通道神经网络
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
10
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
11
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:3
12
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
下载PDF
基于改进Cao算法的SSA与误差修正的超短期风电功率预测
13
作者 张开伟 文中 +2 位作者 杨生鹏 胡梓涵 丁剑 《国外电子测量技术》 2024年第8期37-46,共10页
针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算... 针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算法确定奇异谱分析最佳嵌入维数,对提取的特征实现降噪处理,从而构建风电功率预测模型。最后,利用预测值与真实值的误差构建误差预测模型,通过预测的误差来修正功率预测的结果。以国内某小型风电场算例结果表明,所提方法较卷积神经网络-长短期记忆(CNN-LSTM)预测模型均方根误差(RSME)和均方误差(MSE)分别降低45%和53%,验证了所提模型的有效性。 展开更多
关键词 奇异谱分析 短期功率预测 随机森林 累积贡献率 Cao算法 误差修正
下载PDF
基于CEEMDAN和DBO-GRNN的风电功率超短期预测
14
作者 刘洋 伍双喜 +2 位作者 朱誉 杨苹 孙涛 《电力建设》 CSCD 北大核心 2024年第8期97-105,共9页
针对风电数据波动性过大而导致的风电功率预测不精确问题,提出一种基于自适应噪声完备集合经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与蜣螂算法(dung beetle optimizer,DBO)优... 针对风电数据波动性过大而导致的风电功率预测不精确问题,提出一种基于自适应噪声完备集合经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与蜣螂算法(dung beetle optimizer,DBO)优化的广义回归神经网络(generalized regression neural network,GRNN)超短期风电功率预测方法。首先将原始风功率序列进行时滞特性分析,选取与预测时刻相关性强的时序进行多路时序建模;然后对相关性强的时序进行CEEMDAN分解,得到一组本征模态分量(intrinsic mode function,IMF)和剩余分量;其次将上述两组分量输入经蜣螂优化算法优化的GRNN网络进行各分量预测;然后将各预测分量叠加,得到最终预测结果。算例分析表明,所提的CEEMDAN-DBO-GRNN预测模型的预测精度更高,而且CEEMDAN能够减少风电功率波动性与随机性对预测结果的影响,同时利用蜣螂算法优化后的超参数模型进行预测,在一定程度上提高了超短期风电功率预测的精度。 展开更多
关键词 自适应噪声完备集合经验模态分解(CEEMDAN) 蜣螂优化算法(DBO) 广义回归神经网络(GRNN) 短期风电功率预测
原文传递
基于CNN-GRU与特征增强的超短期光伏功率预测
15
作者 李宇豪 杨建卫 +1 位作者 李佳瑞 刘永生 《计算机仿真》 2024年第10期83-88,共6页
超短期光伏功率预测对电力系统的实时调度有着重要意义。针对以往深度学习预测光伏输出功率重模型轻特征的特点,提出了一种基于CNN-GRU与特征增强的超短期光伏功率预测方法。首先将历史数据按照季节划分,以平抑季节性变化对光伏输出功... 超短期光伏功率预测对电力系统的实时调度有着重要意义。针对以往深度学习预测光伏输出功率重模型轻特征的特点,提出了一种基于CNN-GRU与特征增强的超短期光伏功率预测方法。首先将历史数据按照季节划分,以平抑季节性变化对光伏输出功率的影响。然后将可测数据基于其物理性质进行特征增强,使其能够被神经网络模型更充分的挖掘。最后采用CNN-GRU模型充分挖掘数据的时间与空间特征,进一步提升预测准确率。应用中国江苏某装机容量为75 MW光伏电站实际生产数据进行仿真验证,结果表明,上述方法在不同季节、天气情况下的预测精度均有较为明显的提升。 展开更多
关键词 短期光伏功率预测 特征增强 倾斜辐照度 光伏电池温度 卷积神经网络 门控循环单元网络
下载PDF
一种适用于单/多光伏电站的迁移超短期光伏预测建模框架
16
作者 任密蜂 王家辉 +2 位作者 叶泽甫 朱竹军 阎高伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期359-367,共9页
针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚... 针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚类方法,同时为避免维度过高问题并强化天气类型与光伏发电功率之间的映射关系,提出类内外特征加权结构保持降维算法;其次,通过采用测地线流式核积分完成数据分布对齐,减小样本分布差异对单/多电站模型鲁棒性的影响;最后,采用梯度增强决策树建立光伏功率预测模型,实现光伏功率预测精度的提升。采用公开数据集PVOD验证了所提算法的有效性。 展开更多
关键词 光伏电站 预测 迁移学习 光伏功率超短期预测 结构保持 测地线流式核
下载PDF
基于混沌时间序列GA-VNN模型的超短期风功率多步预测 被引量:43
17
作者 江岳春 张丙江 +2 位作者 邢方方 张雨 王志刚 《电网技术》 EI CSCD 北大核心 2015年第8期2160-2166,共7页
随着风电在电力系统中的渗透水平不断提高,能准确、可靠地进行风功率预测至关重要。为提高风功率超短期预测精度,利用风功率时间序列的混沌特性,推导分析了Volterra泛函模型和3层前馈(back propagation,BP)神经网络在结构上的一致性,提... 随着风电在电力系统中的渗透水平不断提高,能准确、可靠地进行风功率预测至关重要。为提高风功率超短期预测精度,利用风功率时间序列的混沌特性,推导分析了Volterra泛函模型和3层前馈(back propagation,BP)神经网络在结构上的一致性,提出混沌时间序列遗传算法-Volterra神经网络(genetic algorithm-Volterra neural network,GA-VNN)模型,对超短期风功率进行多步预测。该模型将实用的Volterra泛函模型和BP神经网络结合起来,解决了求解Volterra泛函模型高阶核函数的问题。同时设计了一种混沌时间序列GA-VNN模型的学习算法,在算法中利用GA全局寻优能力来优化BP神经网络,获得最优的初始权值和阀值。将上述方法应用于某风电场风功率超短期多步预测中,结果验证了所提模型的多步预测性能明显优于Volterra预测滤波器和BP神经网络。 展开更多
关键词 混沌时间序列 BP神经网络 GA算法 Volterra泛函模型 功率短期多步预测
下载PDF
超短期风电功率预测误差数值特性分层分析方法 被引量:40
18
作者 叶林 任成 +2 位作者 赵永宁 饶日晟 滕景竹 《中国电机工程学报》 EI CSCD 北大核心 2016年第3期692-700,共9页
风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法... 风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法。在概率密度特性提取部分,采用改进后的广义误差分布模型对预测误差概率密度分布进行拟合。该误差分析方法结合了误差模型预测和误差概率密度拟合两种方法的优点,可以更为准确地对超短期风电功率预测误差进行分析和补偿。算例分析结果表明,改进广义误差分布模型的拟合效果优于正态分布、柯西分布和拉普拉斯分布这些常用模型,尤其在尾部特性拟合方面效果更为明显,所提出的误差分层分析方法可以有效减小风电功率预测误差。 展开更多
关键词 短期风电功率预测 广义误差分布 分层分析 误差补偿
下载PDF
风电场超短期风功率预测问题研究 被引量:7
19
作者 易跃春 马月 +3 位作者 王霁雪 李桂敏 秦潇 陈文凯 《水力发电》 北大核心 2013年第7期96-99,共4页
以河北省某实际风电场为例,选取风电机组历史功率数据、风速以及数值天气预报的风速和风向作为输入因子,采用人工神经网络法对风电场超短期功率预测问题进行研究。研究结果显示,输入因子的差异性对风功率预测结果影响较大。另外,风电机... 以河北省某实际风电场为例,选取风电机组历史功率数据、风速以及数值天气预报的风速和风向作为输入因子,采用人工神经网络法对风电场超短期功率预测问题进行研究。研究结果显示,输入因子的差异性对风功率预测结果影响较大。另外,风电机组历史数据对功率预测结果的影响随时间增加而减小,进行3 h以上风电场功率预测时预测结果精度在很大程度上依赖数值天气预报数据精度。 展开更多
关键词 短期功率预测 人工神经网络法 风力发电
下载PDF
基于误差分类的分布式光伏超短期功率预测 被引量:9
20
作者 王程 雷金勇 +3 位作者 许爱东 郭晓斌 刘念 杨苹 《南方电网技术》 北大核心 2015年第4期41-46,共6页
针对分布式光伏系统,使用相关系数确定功率预测模型的样本输入,在没有天气预报,仅依靠天气数据和功率输出的历史记录信息的情况下,采用支持向量机建立了超短期功率预测模型。通过离线的权重系数寻优和基于误差分类的分类器设计,筛选出... 针对分布式光伏系统,使用相关系数确定功率预测模型的样本输入,在没有天气预报,仅依靠天气数据和功率输出的历史记录信息的情况下,采用支持向量机建立了超短期功率预测模型。通过离线的权重系数寻优和基于误差分类的分类器设计,筛选出支持向量机的训练样本,使得建立的模型能够充分反映光伏输出功率的变化规律。实验结果表明,该模型能够获得较高的预测精度,预测样本的分类能够在实际值未知的情况下根据分类结果判断预测值的可信度。 展开更多
关键词 分布式光伏 短期功率预测 支持向量机 分类器
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部