The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss a...The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.展开更多
An advanced cell structure and lifetime control technology has enhanced on-resistance and reverse recovery performance of power MOSFET (metal oxide semiconductor field-effect transistor) simultaneously. This paper i...An advanced cell structure and lifetime control technology has enhanced on-resistance and reverse recovery performance of power MOSFET (metal oxide semiconductor field-effect transistor) simultaneously. This paper introduces a newly developed planar MOSFET--UniFETTM Ⅱ MOSFET--with highly improved body diode characteristics, and presents its performance and effectiveness. UniFET II MOSFET is divided into normal FET(field effect transistor), FRFET (fast recovery field effect transistor), and Ultra FRFET MOSFETs according to the concentration of lifetime control, and their reverse recovery times are about 70%, 25%, and 15% of that of a conventional MOSFET, respectively. To verify the performance and effectiveness of the new MOSFET, an experiment using a 150 W HID (high intensity discharge) lamp ballast that includes a mixed frequency inverter was implemented. As a result, it was verified that two UniFET Ⅱ MOSFETs can replace two conventional MOSFEs and four additional FRDs (fast recovery diodes) without MOSFET failure.展开更多
Efficiency and power loss in the microelectronic devices is a major issue in power electronics applications. The engineers are challenged every year to increase power density and at the same time reduce the amount of ...Efficiency and power loss in the microelectronic devices is a major issue in power electronics applications. The engineers are challenged every year to increase power density and at the same time reduce the amount of power dissipated in the applications to keep the maximum temperatures under specifications. This situation drives a constant demand for better efficiencies in smaller packages. Traditional approaches to improve efficiency in DC/DC synchronous buck converters include reducing conduction losses in the MOSFETs (metal oxide semiconductor field effect transistors) through lower RDS (ON) (resistance drain to source in the ON state) devices and lowering switching losses through low-frequency operation. However, the incremental improvements in RDS (ON) are at a point of diminishing returns and low RDS (ON) devices have large parasitic capacitances that do not facilitate the high-frequency operation required to improve power density. The drive for higher efficiency and increased power in smaller packages is being addressed by advancements in both silicon and packaging technologies. The NexFET power block combines these two technologies to achieve higher levels of performance, and in half the space versus discrete MOSFETs. This article explains these new technologies and highlights their performance advantage.展开更多
This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing...This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing from simulation analysis of hard switching for different transistor structures. For these purposes, the simulation models of power semiconductor switches with high level of validity have been used. After that, the experimental analysis for selected transistor was done with change of parameters that are influencing commutation process of transistor. Target of such kind of analysis was to reach as low switching losses as possible, achieving high power density and efficiency of power system, without utilization of improved switching techniques such as resonant switching. The results confirm that this task is realizable through use of progressive semiconductor devices such as SiC diodes and/or through latest families of MOSFET devices.展开更多
In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability mo...In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability model is difficult to obtain reliable estimation of unit radiation resistance performance with small samples. Considering that different products will change differently after high-energy particle radiation, we construct a model based on the gamma degradation process. This model can efficiently describe the law of unit radiation resistance variation with the total radiation dose levels under the effect of the total dose and displacement damage. Finally, the proposed model is used to assess the anti-radiation performance of the N-channel power MOSFET device STRH60N20FSY3 produced by STM to obtain average unit radiation resistance, survival probability, survival function, etc.展开更多
文摘The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.
文摘An advanced cell structure and lifetime control technology has enhanced on-resistance and reverse recovery performance of power MOSFET (metal oxide semiconductor field-effect transistor) simultaneously. This paper introduces a newly developed planar MOSFET--UniFETTM Ⅱ MOSFET--with highly improved body diode characteristics, and presents its performance and effectiveness. UniFET II MOSFET is divided into normal FET(field effect transistor), FRFET (fast recovery field effect transistor), and Ultra FRFET MOSFETs according to the concentration of lifetime control, and their reverse recovery times are about 70%, 25%, and 15% of that of a conventional MOSFET, respectively. To verify the performance and effectiveness of the new MOSFET, an experiment using a 150 W HID (high intensity discharge) lamp ballast that includes a mixed frequency inverter was implemented. As a result, it was verified that two UniFET Ⅱ MOSFETs can replace two conventional MOSFEs and four additional FRDs (fast recovery diodes) without MOSFET failure.
文摘Efficiency and power loss in the microelectronic devices is a major issue in power electronics applications. The engineers are challenged every year to increase power density and at the same time reduce the amount of power dissipated in the applications to keep the maximum temperatures under specifications. This situation drives a constant demand for better efficiencies in smaller packages. Traditional approaches to improve efficiency in DC/DC synchronous buck converters include reducing conduction losses in the MOSFETs (metal oxide semiconductor field effect transistors) through lower RDS (ON) (resistance drain to source in the ON state) devices and lowering switching losses through low-frequency operation. However, the incremental improvements in RDS (ON) are at a point of diminishing returns and low RDS (ON) devices have large parasitic capacitances that do not facilitate the high-frequency operation required to improve power density. The drive for higher efficiency and increased power in smaller packages is being addressed by advancements in both silicon and packaging technologies. The NexFET power block combines these two technologies to achieve higher levels of performance, and in half the space versus discrete MOSFETs. This article explains these new technologies and highlights their performance advantage.
文摘This paper deals with optimization of hard switching commutation mode for high-power, high-frequency consumer applications for selected power transistor. The experimental investigation of suitable settings is outgoing from simulation analysis of hard switching for different transistor structures. For these purposes, the simulation models of power semiconductor switches with high level of validity have been used. After that, the experimental analysis for selected transistor was done with change of parameters that are influencing commutation process of transistor. Target of such kind of analysis was to reach as low switching losses as possible, achieving high power density and efficiency of power system, without utilization of improved switching techniques such as resonant switching. The results confirm that this task is realizable through use of progressive semiconductor devices such as SiC diodes and/or through latest families of MOSFET devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.71371067&70901024)Hunan Provincial Natural Science Foundation of China
文摘In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability model is difficult to obtain reliable estimation of unit radiation resistance performance with small samples. Considering that different products will change differently after high-energy particle radiation, we construct a model based on the gamma degradation process. This model can efficiently describe the law of unit radiation resistance variation with the total radiation dose levels under the effect of the total dose and displacement damage. Finally, the proposed model is used to assess the anti-radiation performance of the N-channel power MOSFET device STRH60N20FSY3 produced by STM to obtain average unit radiation resistance, survival probability, survival function, etc.