In recent years, because of increasing human activities, ecosystems have been substantially disturbed and their service functions have been greatly compromised. Based on the effect of land use changes on the major eco...In recent years, because of increasing human activities, ecosystems have been substantially disturbed and their service functions have been greatly compromised. Based on the effect of land use changes on the major ecosystem services, we estimated the ecosystem comprehensive anthropogenic disturbance index(ECADI) and analyzed the spatio-temporal characteristics of changes in the ECADI in China from 1990 to 2010. The average ECADI of the major ecosystem function zones in China in 2010 is approximately 0.382. The ECADI of Northeast China and North China is slightly higher than that of Northwest China and Southwest China. Most zones have slight changes in the ECADI. The average increases of ECADI in the major ecosystem function zones in China from 1990 to 2000 and from 2000 to 2010 are 0.0024 and 0.0002, respectively. The increase is mainly due to reclamation and urbanization, whereas the decrease is due to the implementation of ecosystem protection policies. During the last 20 years, the ECADI of water resources conservation zones increased first, and then stopped. The ECADI of soil conservation zones increased first, and then declined. The ECADI of sandstorm prevention zones, biodiversity conservation zones and flooding mitigation zones increased continuously. Our results may provide proposals to the government regarding land use planning and ecosystem protection plans in the major ecosystem zones. The major ecosystem function zones in the western part of China have been protected effectively. However, the major ecosystem function zones in the eastern part of China require more protection in the future.展开更多
Miyun County,located in the northeast of Chinese capital Beijing,was underwent remarkable variations in land use in recent years.This paper aimed to detect changes in land use of Miyun from 1997 to 2005,and to qualify...Miyun County,located in the northeast of Chinese capital Beijing,was underwent remarkable variations in land use in recent years.This paper aimed to detect changes in land use of Miyun from 1997 to 2005,and to qualify the response of ecosystem to LUCC based on ecosystem services valuation.With two-periods TM images,we got land use change data,and then ecosystem services values were calculated using ecosystem services valuation coefficients proposed by Chinese scholar Xie Gaodi.Results showed that water area,farm land and unused land decreased while residential land,forest land,grassland and orchard land increased during the study period.The loss of ESV was RMB 206 million and the main reason was the decrease of water area and farm land area.As for spatial variation,there were most dramatically land use change and ESV decline in reservoir ecological protection region.The coefficient sensitivity analysis indicates that valuation coefficients used in the study are suitable and results are reasonable.The driving forces of ESV loss were rapid population growth and economic development.More work should be done to make eco-environment stay healthy.展开更多
Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant...Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant to China's overall development pattern. The external function of regional land use changes during different stages of economic development. In this study, we proposed a novel classification system based on the dominant function of land use according to "production-ecology-life", and then analyzed land use change and regional eco-environmental responses from a functional perspective of regional development. The results showed that from 1985 to 2008, land use change features in Jiangsu were that productive land area decreased and eco- logical and living land areas increased. Land use changes in southern Jiangsu were the most dramatic. In southern and central parts of Jiangsu the agricultural production function weakened and urban life service function strengthened; in northern Jiangsu, the mining production function's comparative advantage highlighted that the rural life service function was weakening. Ecological environmental quality decreased slightly in Jiangsu and its three regions. The maximum contribution rate to ecological environmental change occurred in southern Jiangsu and the minimum rate was located in the north. Eco-environmental quality deteriorated in southern and central Jiangsu, related to expanding construction land in urban and rural areas. Ecological environmental quality deterioration in northern Jiangsu is probably due to land development and consolidation. The main reason for improvements in regional ecological environments is that agricultural production land was converted to water ecological land across Jiangsu.展开更多
Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quanti...Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quantitative relationship with thermal environment are still poorly understood, resulting in ineffective application in urban ecological planning and management.Through the integration of "spatial structure theory" in urban geography and "surface energy balance" in urban climatology, we proposed a new concept of urban surface structure and thermal environment regulation to reveal the mechanism between urban spatial structure and surface thermal environment. We developed the EcoCity model for regulating urban land cover structure and thermal environment, and established the eco-regulation thresholds of urban surface thermal environments. Based on the comprehensive analysis of experimental observation, remotely sensed and meteorological data, we examined the spatial patterns of urban habitation, industrial, infrastructure service, and ecological spaces. We examined the impacts of internal land-cover components(e.g., urban impervious surfaces, greenness, and water) on surface radiation and heat flux. This research indicated that difference of thermal environments among urban functional areas is closely related to the proportions of the land-cover components.The highly dense impervious surface areas in commercial and residential zones significantly increased land surface temperature through increasing sensible heat flux, while greenness and water decrease land surface temperature through increasing latent heat flux. We also found that different functional zones due to various proportions of green spaces have various heat dissipation roles and ecological thresholds. Urban greening projects in highly dense impervious surfaces areas such as commercial, transportation, and residential zones are especially effective in promoting latent heat dissipation efficiency of vegetation, leading to strongly cooling effect of unit vegetation coverage. This research indicates that the EcoCity model provides the fundamentals to understand the coupled mechanism between urban land use structure and surface flux and the analysis of their spatiotemporal characteristics. This model provides a general computational model system for defining urban heat island mitigation, the greening ratio indexes, and their regulating thresholds for different functional zones.展开更多
基金Under the auspices of National Key Basic Research Program of China(No.2014CB954302)National Science and Technology Support Plan Project of China(No.2013BAC03B04)
文摘In recent years, because of increasing human activities, ecosystems have been substantially disturbed and their service functions have been greatly compromised. Based on the effect of land use changes on the major ecosystem services, we estimated the ecosystem comprehensive anthropogenic disturbance index(ECADI) and analyzed the spatio-temporal characteristics of changes in the ECADI in China from 1990 to 2010. The average ECADI of the major ecosystem function zones in China in 2010 is approximately 0.382. The ECADI of Northeast China and North China is slightly higher than that of Northwest China and Southwest China. Most zones have slight changes in the ECADI. The average increases of ECADI in the major ecosystem function zones in China from 1990 to 2000 and from 2000 to 2010 are 0.0024 and 0.0002, respectively. The increase is mainly due to reclamation and urbanization, whereas the decrease is due to the implementation of ecosystem protection policies. During the last 20 years, the ECADI of water resources conservation zones increased first, and then stopped. The ECADI of soil conservation zones increased first, and then declined. The ECADI of sandstorm prevention zones, biodiversity conservation zones and flooding mitigation zones increased continuously. Our results may provide proposals to the government regarding land use planning and ecosystem protection plans in the major ecosystem zones. The major ecosystem function zones in the western part of China have been protected effectively. However, the major ecosystem function zones in the eastern part of China require more protection in the future.
基金supported by the Hi-tech Research and Development Program of China(Grant No.2006AA120108)
文摘Miyun County,located in the northeast of Chinese capital Beijing,was underwent remarkable variations in land use in recent years.This paper aimed to detect changes in land use of Miyun from 1997 to 2005,and to qualify the response of ecosystem to LUCC based on ecosystem services valuation.With two-periods TM images,we got land use change data,and then ecosystem services values were calculated using ecosystem services valuation coefficients proposed by Chinese scholar Xie Gaodi.Results showed that water area,farm land and unused land decreased while residential land,forest land,grassland and orchard land increased during the study period.The loss of ESV was RMB 206 million and the main reason was the decrease of water area and farm land area.As for spatial variation,there were most dramatically land use change and ESV decline in reservoir ecological protection region.The coefficient sensitivity analysis indicates that valuation coefficients used in the study are suitable and results are reasonable.The driving forces of ESV loss were rapid population growth and economic development.More work should be done to make eco-environment stay healthy.
基金National Natural Science Foundation of China(71503117,41301651)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant to China's overall development pattern. The external function of regional land use changes during different stages of economic development. In this study, we proposed a novel classification system based on the dominant function of land use according to "production-ecology-life", and then analyzed land use change and regional eco-environmental responses from a functional perspective of regional development. The results showed that from 1985 to 2008, land use change features in Jiangsu were that productive land area decreased and eco- logical and living land areas increased. Land use changes in southern Jiangsu were the most dramatic. In southern and central parts of Jiangsu the agricultural production function weakened and urban life service function strengthened; in northern Jiangsu, the mining production function's comparative advantage highlighted that the rural life service function was weakening. Ecological environmental quality decreased slightly in Jiangsu and its three regions. The maximum contribution rate to ecological environmental change occurred in southern Jiangsu and the minimum rate was located in the north. Eco-environmental quality deteriorated in southern and central Jiangsu, related to expanding construction land in urban and rural areas. Ecological environmental quality deterioration in northern Jiangsu is probably due to land development and consolidation. The main reason for improvements in regional ecological environments is that agricultural production land was converted to water ecological land across Jiangsu.
基金financially supported by the Major Projects of the National Natural Science Foundation of China (Grant No. 41590842)General Program of the National Natural Science Foundation of China (Grant No. 41371408)
文摘Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quantitative relationship with thermal environment are still poorly understood, resulting in ineffective application in urban ecological planning and management.Through the integration of "spatial structure theory" in urban geography and "surface energy balance" in urban climatology, we proposed a new concept of urban surface structure and thermal environment regulation to reveal the mechanism between urban spatial structure and surface thermal environment. We developed the EcoCity model for regulating urban land cover structure and thermal environment, and established the eco-regulation thresholds of urban surface thermal environments. Based on the comprehensive analysis of experimental observation, remotely sensed and meteorological data, we examined the spatial patterns of urban habitation, industrial, infrastructure service, and ecological spaces. We examined the impacts of internal land-cover components(e.g., urban impervious surfaces, greenness, and water) on surface radiation and heat flux. This research indicated that difference of thermal environments among urban functional areas is closely related to the proportions of the land-cover components.The highly dense impervious surface areas in commercial and residential zones significantly increased land surface temperature through increasing sensible heat flux, while greenness and water decrease land surface temperature through increasing latent heat flux. We also found that different functional zones due to various proportions of green spaces have various heat dissipation roles and ecological thresholds. Urban greening projects in highly dense impervious surfaces areas such as commercial, transportation, and residential zones are especially effective in promoting latent heat dissipation efficiency of vegetation, leading to strongly cooling effect of unit vegetation coverage. This research indicates that the EcoCity model provides the fundamentals to understand the coupled mechanism between urban land use structure and surface flux and the analysis of their spatiotemporal characteristics. This model provides a general computational model system for defining urban heat island mitigation, the greening ratio indexes, and their regulating thresholds for different functional zones.