Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address ...Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.展开更多
The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore si...The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.展开更多
Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir...Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir‐La/AC catalyst. High angle annular dark‐field‐scanning transmission electron mi‐croscopy(HAADF‐STEM) measurement results show that most of the Ir species on Ir‐La‐S/AC exist as single atomic sites, while those on Ir‐La/AC exist as nanoparticles with an average diameter of 1.5 nm. Evaluation of Ir‐La‐S/AC as a catalyst for heterogeneous carbonylation of methanol to acetyl gave a maximum TOF (turn‐over‐frequency) of 2760 h^–1, which was distinctly higher than that achieved by the Ir‐La/AC catalyst(approximately 1000 h^-1). Temperature‐programmed desorption of ammonia(NH3‐TPD) result shows that the addition of sulfuric acid during the preparation pro‐cedure results in significantly more acidic sites on Ir‐La‐S/AC than those on Ir‐La/AC, which plays a key role in the enhancement of CO insertion as the rate‐determining step. Tempera‐ture‐programmed reduction(TPR) and in situ X‐ray photoelectron spectroscopy reveal that Ir spe‐cies are more reducible, and that more Ir^+ might be formed by activation of Ir‐La‐S/AC than those on the Ir‐La/AC catalyst, which is thought to be beneficial for reductive elimination of AcI from Ir^3+ species as an essential step for CH3I regeneration and acetyl formation.展开更多
Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and g...Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction.展开更多
Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nick...Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nickel foam has been developed as a bifunctional electrocatalyst for urea oxidation and hydrogen evolution.The NiMoO_(4)‐200/NF catalyst exhibits efficient activity toward hydrogen evolution reaction with a low overpotential of only 68 mV in 1.0 mol/L KOH to gain a current density of 10 mA cm^(–2).The NiMoO_(4)‐300/NF catalyst exhibits a prominent oxygen evolution reaction(OER)catalytic activity with an overpotential of 288 mV at 50 mA cm^(–2),as well as for urea oxidation reaction with an ultralow potential of 1.36 V at 10 mA cm^(–2).The observed difference in electrocatalytic activity and selectivity,derived by temperature variation,is ascribed to different lattice oxygen contents.The lattice oxygen of NiMoO_(4)‐300/NF is more than that of NiMoO_(4)‐200/NF,and the lattice oxygen is conducive to the progress of OER.A urea electrolyzer was assembled with Ni‐MoO_(4)‐200/NF and NiMoO_(4)‐300/NF as cathode and anode respectively,delivering a current density of 10 mA cm^(–2)at a cell voltage of merely 1.38 V.The NiMoO_(4)nanorod arrays has also been successfully applied for photovoltage‐driven urea electrolysis and hydrogen production,revealing its great potential for solar‐driven energy conversion.展开更多
Acetylene coupling with ethylene dichloride,which uses both coal and oil resources,is attractive for sustainable PVC manufacturing.Herein,highly active and stable carbon nitride‐based catalysts were developed by a no...Acetylene coupling with ethylene dichloride,which uses both coal and oil resources,is attractive for sustainable PVC manufacturing.Herein,highly active and stable carbon nitride‐based catalysts were developed by a novel pre‐oxidation‐pyrolysis process,affording unprecedented dehydrochlorination activity with good durability.The best‐performing system was further modified with different precious metals(Au,Pt,and Ru)to promote the hydrochlorination chemistry between the in‐situ formed hydrogen chloride and acetylene co‐feed.The presence of metal centers intensifies the hydrochlorination activity but weakens the dehydrochlorination ability due to competitive adsorption between the two reactants at the metal sites.Superior coupling performance was achieved over C_(3)N_(4)/AC and single‐atom Au/C_(3)N_(4)/AC catalysts in cascade reactors.Our results strongly suggest that dehydrochlorination is an essential step in the coupling reaction,and the activation of acetylene and ethylene dichloride molecules requires different active sites that should be engineered in future work.展开更多
Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performanc...Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.展开更多
The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations bet...The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.展开更多
Toluene methylation with methanol on H‐ZSM‐5(Z5)zeolite for the directional transformation of toluene to xylene has been industrialized.However,great challenges remain because of the high energy barrier of methanol ...Toluene methylation with methanol on H‐ZSM‐5(Z5)zeolite for the directional transformation of toluene to xylene has been industrialized.However,great challenges remain because of the high energy barrier of methanol deprotonation to the methoxy group,the side reaction of methanol to olefins,coke formation,and the deactivation of zeolites.Herein,we report the toluene methylation coupled with CO hydrogenation to showcase an enhancement in para‐xylene(PX)selectivity by employing a bifunctional catalyst composed of ZnZrO_(x)(ZZO)and modified Z5.The results showed that a PX selectivity of up to 81.8%in xylene and xylene selectivity of 64.8%in hydrocarbons at 10.3%toluene conversion can be realized over the bifunctional catalyst on a fixed‐bed reactor.The selectivity of gaseous hydrocarbons decreased to 10.9%,and approximately half of that was observed in methanol reagent route where the PX selectivity in xylene was 38.8%.We observed that the acid strength,the quantity ratio of Brönsted and Lewis acid sites,and the pore size of zeolites were essential for the PX selectivity.The investigation of the H_(2)/D_(2) kinetic isotope effect revealed that the newborn methyl group in xylene resulted from the hydrogenation of CO rather than toluene disproportionation.Furthermore,the catalyst showed no evident deactivation within the 100 h stability test.The findings offer a promising route for the production of value‐added PX with high selectivity via toluene methylation coupled with syngas conversion.展开更多
Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energ...Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energy barrier limits the formation and nano‐assembly of the heterogeneous junctions between MOFs and metal sulphides.Herein,the heterostructured Zr‐MOF‐S@CdS are successfully constructed through a sequential synthesis method,in which the mesoporous Zr‐MOF are firstly decorated with thioglycolic acid through pore functionalization,and followed by the S^(2-)anion exchange process resulting in the surface close attached growth of CdS onto Zr‐MOF‐S materials.Due to the presence of molecules linkers,the CdS can be precisely decorated onto Zr‐MOF‐S without aggregation,which can provide more active sites.Moreover,the intimate connections and the suitable band structures between two materials can also facilitate the photogenerated electron‐hole pairs separation.Therefore,the resulting Zr‐MOF‐S@CdS with appropriate ratio exhibits high photocatalytic activity for water reduction,in which the H_(2) evolution rate can reach up to 1861.7μmol·g^(‒1)·h^(‒1),4.5 times higher than pure CdS and 2.3 times higher than of Zr‐MOF/CdS,respectively.Considering the promising future of MOF‐based photocatalysts,this work may provide an avenue for the further design and synthesis MOF‐based composite photocatalysts for efficient H_(2) evolution.展开更多
The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) ...The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.展开更多
The acid-functionalized ionic liquid([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance(NMR) and Fourier transform infrared spectroscopy(FT-IR) show that the synthesis method is feasible ...The acid-functionalized ionic liquid([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance(NMR) and Fourier transform infrared spectroscopy(FT-IR) show that the synthesis method is feasible and high purity of ionic liquid can be obtained. Using [HSO3Pmim]HSO4as the catalyst, we studied the reaction kinetics of synthesizing sec-butyl alcohol from sec-butyl acetate and methanol by transesterification in a high-pressure batch reactor. The effects of temperature, initial molar ratio of methanol to ester, and catalyst concentration on the conversion of sec-butyl acetate were studied. Based on its possible reaction mechanism, a homogeneous kinetic model was established. The results show that the reaction heat ΔH is 10.94 × 103J·mol-1, so the reaction is an endothermic reaction. The activation energies Ea+and Ea-are 60.38 × 103 and 49.44 × 103J·mol-1,respectively.展开更多
The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series...The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.展开更多
Experimental use of multi-functional desulfurizing agent TS-01 for FCC gasoline in the FCC unitof SINOPEC Jiujiang Company shows that the multi-functional desulfurizing agent can effectivelyremove various kinds of sul...Experimental use of multi-functional desulfurizing agent TS-01 for FCC gasoline in the FCC unitof SINOPEC Jiujiang Company shows that the multi-functional desulfurizing agent can effectivelyremove various kinds of sulfur in FCC gasoline and diesel fuel and fulfill passivation on heavy metals.展开更多
Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical sys...Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical systems. Porous N-doped carbon nanotubes (NCNTs) were fabri- cated by KOH activation and pyrolysis of polypyrrole nanotubes. The NCNTs possessed a large surface area of more than 1,000 m2 g-1. NCNT electrocatalysts, particu- larly those annealed at 900 ℃, exhibited excellent ORR electrocatalytic performance. Specifically, they yielded a more positive onset potential, higher current density, and long-term operation stability in alkaline media, when compared with a commercially available 20 wt% Pt/C catalyst. This resulted from the synergetic effect between the dominant pyridinic/graphitic-N species and the porous tube structures. The NCNT electrocatalyst also exhibited good performance for the OER. The metal-free porous nitrogen-doped carbon nanomaterials were prepared from low cost and environmentally friendly precursors. They are potential alternatives to Pt/C catalysts, for electrochemical energy conversion and storage.展开更多
Recent developments in nanochemistry offer precise morphology control of nanomaterials, which has significant impacts in the field of heterogeneous catalysis. Rational design of bifunctional catalysts can influence va...Recent developments in nanochemistry offer precise morphology control of nanomaterials, which has significant impacts in the field of heterogeneous catalysis. Rational design of bifunctional catalysts can influence various aspects of catalytic properties. In this review, a new class of bifunctional catalysts with a metal@silica yolk-shell nanostructure is introduced. This structure has many advantages as a heterogeneous catalyst since it ensures a homogeneous environment around each metal core, and particle sintering is effectively eliminated during high temperature reactions. The catalysts exhibit high activity and recyclability in gas- and solution-phase reactions. It is anticipated that appropriate selection of bifunctional components and optimal structural control will significantly further enhance the catalytic properties, and enable target reaction-oriented development of new catalysts.展开更多
Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for u...Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne(PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal(TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts.These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.展开更多
A variety of unique Al(salen) complexes functionalized by imidazolium-based ionic liquid(IL) moieties with the salen ligand at the two sides of 3,3′-position have been successfully prepared, rather than familiar 5,5...A variety of unique Al(salen) complexes functionalized by imidazolium-based ionic liquid(IL) moieties with the salen ligand at the two sides of 3,3′-position have been successfully prepared, rather than familiar 5,5′-position reported previously.The catalytic activity obtained by these bifunctional catalysts could be superior to those of the binary type catalysts in the formation of five-membered heterocyclic compounds from the cycloaddition reaction of CO_2 and three-membered heterocyclic compounds(including terminal epoxides and N-substituted aziridines), presumably due to the distinguished intramolecularly synergistic catalysis, which might lead to perform the cycloaddition reaction at ambient conditions and retain excellent yield and unprecedented chemo-or regioselectivity. Moreover, the polyether-based trifunctional Al(salen) catalysts with the best catalytic performance could be regenerated and reused at least eight times without any obvious decreases in catalytic activity. Finally,the kinetic investigation suggested the structure of catalysts had important influences on the catalytic activity, thereby proposing the possible reaction mechanism.展开更多
Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetalli...Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetallic alloy nanoparticles on N-doped carbon support(RuCoMn@NC)via the pyrolysis-adsorption-pyrolysis process using ZIF-67 as a precursor.The RuCoMn@NC catalyst exhibited excellent electrocatalytic performance for the hydrogen evolution reaction(HER)over a wide range of pH and glucose oxidation reaction in alkaline media.It showed exceptional HER activity in alkaline medium,superior to that of the commercial Pt/C catalyst(20 wt%),and good electrochemical stability.Further,a two-electrode alkaline electrolyzer pairing RuCoMn@NC as both cathode and anode was employed,and only a cell voltage of 1.63 V was required to attain a current density of 10 mA cm^(-2)in glucose electrolysis,which is about 270 mV lower than that in the overall water-splitting electrolyzer.This paper provides a promising method for developing efficiently bifunctional electrocatalysts driving redox electrocatalysis,and it would be beneficial to energy-saving electrolytic H_(2) production.展开更多
基金supported by the National Natural Science Foundation of China(2127303621177024)+1 种基金the National Basic Research Program of China(973 Program2014CB239303)~~
文摘Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.
文摘The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.
基金supported by the National Key R&D Program of China (2017YFB0602203)~~
文摘Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir‐La/AC catalyst. High angle annular dark‐field‐scanning transmission electron mi‐croscopy(HAADF‐STEM) measurement results show that most of the Ir species on Ir‐La‐S/AC exist as single atomic sites, while those on Ir‐La/AC exist as nanoparticles with an average diameter of 1.5 nm. Evaluation of Ir‐La‐S/AC as a catalyst for heterogeneous carbonylation of methanol to acetyl gave a maximum TOF (turn‐over‐frequency) of 2760 h^–1, which was distinctly higher than that achieved by the Ir‐La/AC catalyst(approximately 1000 h^-1). Temperature‐programmed desorption of ammonia(NH3‐TPD) result shows that the addition of sulfuric acid during the preparation pro‐cedure results in significantly more acidic sites on Ir‐La‐S/AC than those on Ir‐La/AC, which plays a key role in the enhancement of CO insertion as the rate‐determining step. Tempera‐ture‐programmed reduction(TPR) and in situ X‐ray photoelectron spectroscopy reveal that Ir spe‐cies are more reducible, and that more Ir^+ might be formed by activation of Ir‐La‐S/AC than those on the Ir‐La/AC catalyst, which is thought to be beneficial for reductive elimination of AcI from Ir^3+ species as an essential step for CH3I regeneration and acetyl formation.
文摘Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction.
文摘Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nickel foam has been developed as a bifunctional electrocatalyst for urea oxidation and hydrogen evolution.The NiMoO_(4)‐200/NF catalyst exhibits efficient activity toward hydrogen evolution reaction with a low overpotential of only 68 mV in 1.0 mol/L KOH to gain a current density of 10 mA cm^(–2).The NiMoO_(4)‐300/NF catalyst exhibits a prominent oxygen evolution reaction(OER)catalytic activity with an overpotential of 288 mV at 50 mA cm^(–2),as well as for urea oxidation reaction with an ultralow potential of 1.36 V at 10 mA cm^(–2).The observed difference in electrocatalytic activity and selectivity,derived by temperature variation,is ascribed to different lattice oxygen contents.The lattice oxygen of NiMoO_(4)‐300/NF is more than that of NiMoO_(4)‐200/NF,and the lattice oxygen is conducive to the progress of OER.A urea electrolyzer was assembled with Ni‐MoO_(4)‐200/NF and NiMoO_(4)‐300/NF as cathode and anode respectively,delivering a current density of 10 mA cm^(–2)at a cell voltage of merely 1.38 V.The NiMoO_(4)nanorod arrays has also been successfully applied for photovoltage‐driven urea electrolysis and hydrogen production,revealing its great potential for solar‐driven energy conversion.
文摘Acetylene coupling with ethylene dichloride,which uses both coal and oil resources,is attractive for sustainable PVC manufacturing.Herein,highly active and stable carbon nitride‐based catalysts were developed by a novel pre‐oxidation‐pyrolysis process,affording unprecedented dehydrochlorination activity with good durability.The best‐performing system was further modified with different precious metals(Au,Pt,and Ru)to promote the hydrochlorination chemistry between the in‐situ formed hydrogen chloride and acetylene co‐feed.The presence of metal centers intensifies the hydrochlorination activity but weakens the dehydrochlorination ability due to competitive adsorption between the two reactants at the metal sites.Superior coupling performance was achieved over C_(3)N_(4)/AC and single‐atom Au/C_(3)N_(4)/AC catalysts in cascade reactors.Our results strongly suggest that dehydrochlorination is an essential step in the coupling reaction,and the activation of acetylene and ethylene dichloride molecules requires different active sites that should be engineered in future work.
文摘Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.
文摘The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.
文摘Toluene methylation with methanol on H‐ZSM‐5(Z5)zeolite for the directional transformation of toluene to xylene has been industrialized.However,great challenges remain because of the high energy barrier of methanol deprotonation to the methoxy group,the side reaction of methanol to olefins,coke formation,and the deactivation of zeolites.Herein,we report the toluene methylation coupled with CO hydrogenation to showcase an enhancement in para‐xylene(PX)selectivity by employing a bifunctional catalyst composed of ZnZrO_(x)(ZZO)and modified Z5.The results showed that a PX selectivity of up to 81.8%in xylene and xylene selectivity of 64.8%in hydrocarbons at 10.3%toluene conversion can be realized over the bifunctional catalyst on a fixed‐bed reactor.The selectivity of gaseous hydrocarbons decreased to 10.9%,and approximately half of that was observed in methanol reagent route where the PX selectivity in xylene was 38.8%.We observed that the acid strength,the quantity ratio of Brönsted and Lewis acid sites,and the pore size of zeolites were essential for the PX selectivity.The investigation of the H_(2)/D_(2) kinetic isotope effect revealed that the newborn methyl group in xylene resulted from the hydrogenation of CO rather than toluene disproportionation.Furthermore,the catalyst showed no evident deactivation within the 100 h stability test.The findings offer a promising route for the production of value‐added PX with high selectivity via toluene methylation coupled with syngas conversion.
文摘Different materials,such as metal sulphides,are often combined with metal‐organic frameworks(MOFs)to develop multi‐functional composites and improve their photocatalytic properties.However,the high interfacial energy barrier limits the formation and nano‐assembly of the heterogeneous junctions between MOFs and metal sulphides.Herein,the heterostructured Zr‐MOF‐S@CdS are successfully constructed through a sequential synthesis method,in which the mesoporous Zr‐MOF are firstly decorated with thioglycolic acid through pore functionalization,and followed by the S^(2-)anion exchange process resulting in the surface close attached growth of CdS onto Zr‐MOF‐S materials.Due to the presence of molecules linkers,the CdS can be precisely decorated onto Zr‐MOF‐S without aggregation,which can provide more active sites.Moreover,the intimate connections and the suitable band structures between two materials can also facilitate the photogenerated electron‐hole pairs separation.Therefore,the resulting Zr‐MOF‐S@CdS with appropriate ratio exhibits high photocatalytic activity for water reduction,in which the H_(2) evolution rate can reach up to 1861.7μmol·g^(‒1)·h^(‒1),4.5 times higher than pure CdS and 2.3 times higher than of Zr‐MOF/CdS,respectively.Considering the promising future of MOF‐based photocatalysts,this work may provide an avenue for the further design and synthesis MOF‐based composite photocatalysts for efficient H_(2) evolution.
基金Supported by the National Natural Science Foundation of China (20576025). the National Key Basic Project of China (2005CCA06100), the Science and Technological Research and Development Project of Hebei Province (07215602D) and the Natural Science Foundation of Hebei Province 032007000010).
文摘The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.
基金Supported by the New Century Excellent Talents in Fujian Province(JA12014)the Natural Science Foundation for Distinguished Young Scholars of Fujian(2014J06004)
文摘The acid-functionalized ionic liquid([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance(NMR) and Fourier transform infrared spectroscopy(FT-IR) show that the synthesis method is feasible and high purity of ionic liquid can be obtained. Using [HSO3Pmim]HSO4as the catalyst, we studied the reaction kinetics of synthesizing sec-butyl alcohol from sec-butyl acetate and methanol by transesterification in a high-pressure batch reactor. The effects of temperature, initial molar ratio of methanol to ester, and catalyst concentration on the conversion of sec-butyl acetate were studied. Based on its possible reaction mechanism, a homogeneous kinetic model was established. The results show that the reaction heat ΔH is 10.94 × 103J·mol-1, so the reaction is an endothermic reaction. The activation energies Ea+and Ea-are 60.38 × 103 and 49.44 × 103J·mol-1,respectively.
文摘The one-pot synthesis of methyl isobutyl ketone(MIBK) from acetone using multifunctional catalysts is an important sustainable organic synthesis method with high atom and energy efficiency.Herein. we report a series of Pd supported on mixed metal oxide(MMO) catalysts with controllable acidic/basic/metallic sites on the surface. We study the relationship between the nature, synergy,and proximity of active sites and the catalytic performance of the multifunctional catalyst in the tandem reaction, in detail. In the existence of Lewis acid and base sites, the catalysts with medium-strength acidic/basic sites show preferred activity and/or MIBK selectivity. For multifunctional catalysts, the catalytic properties are more than just a collection of active sites, and the Pd/Mg_3Al-MMO catalyst possessing 0.1% Pd loading and ~0.4 acid/base molar ratio exhibits the optimal 42.1% acetone conversion and 37.2% MIBK yield, which is among the best reported so far for this tandem reaction under similar conditions. Moreover, the proximity test indicates that the intimate distance between acidic/basic/metallic sites can greatly shorten the diffusion time of the intermediate species from each active site, leading to an enhancement in the catalytic performance.
文摘Experimental use of multi-functional desulfurizing agent TS-01 for FCC gasoline in the FCC unitof SINOPEC Jiujiang Company shows that the multi-functional desulfurizing agent can effectivelyremove various kinds of sulfur in FCC gasoline and diesel fuel and fulfill passivation on heavy metals.
基金This work was supported by the National Nat- ural Science Foundation of China (51273008, 51473008), and the National Basic Research Program of China (2012CB933200).
文摘Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical systems. Porous N-doped carbon nanotubes (NCNTs) were fabri- cated by KOH activation and pyrolysis of polypyrrole nanotubes. The NCNTs possessed a large surface area of more than 1,000 m2 g-1. NCNT electrocatalysts, particu- larly those annealed at 900 ℃, exhibited excellent ORR electrocatalytic performance. Specifically, they yielded a more positive onset potential, higher current density, and long-term operation stability in alkaline media, when compared with a commercially available 20 wt% Pt/C catalyst. This resulted from the synergetic effect between the dominant pyridinic/graphitic-N species and the porous tube structures. The NCNT electrocatalyst also exhibited good performance for the OER. The metal-free porous nitrogen-doped carbon nanomaterials were prepared from low cost and environmentally friendly precursors. They are potential alternatives to Pt/C catalysts, for electrochemical energy conversion and storage.
文摘Recent developments in nanochemistry offer precise morphology control of nanomaterials, which has significant impacts in the field of heterogeneous catalysis. Rational design of bifunctional catalysts can influence various aspects of catalytic properties. In this review, a new class of bifunctional catalysts with a metal@silica yolk-shell nanostructure is introduced. This structure has many advantages as a heterogeneous catalyst since it ensures a homogeneous environment around each metal core, and particle sintering is effectively eliminated during high temperature reactions. The catalysts exhibit high activity and recyclability in gas- and solution-phase reactions. It is anticipated that appropriate selection of bifunctional components and optimal structural control will significantly further enhance the catalytic properties, and enable target reaction-oriented development of new catalysts.
基金supported by the Basic Research Project of Natural Science Foundation of Shandong Province(ZR2018ZB0751)the National Natural Science Foundation of China(11774201)the Taishan Scholar Program of Shandong Province。
文摘Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne(PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal(TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts.These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.
基金supported by the National Science for Distinguished Young Scholars of China(21425627)the National Natural Science Foundation of China(21676306)+1 种基金the Natural Science Foundation of Guangdong Province(2016A030310211,2015A030313104)the Fundamental Research Funds for the Central Universities of Sun Yat-sen University
文摘A variety of unique Al(salen) complexes functionalized by imidazolium-based ionic liquid(IL) moieties with the salen ligand at the two sides of 3,3′-position have been successfully prepared, rather than familiar 5,5′-position reported previously.The catalytic activity obtained by these bifunctional catalysts could be superior to those of the binary type catalysts in the formation of five-membered heterocyclic compounds from the cycloaddition reaction of CO_2 and three-membered heterocyclic compounds(including terminal epoxides and N-substituted aziridines), presumably due to the distinguished intramolecularly synergistic catalysis, which might lead to perform the cycloaddition reaction at ambient conditions and retain excellent yield and unprecedented chemo-or regioselectivity. Moreover, the polyether-based trifunctional Al(salen) catalysts with the best catalytic performance could be regenerated and reused at least eight times without any obvious decreases in catalytic activity. Finally,the kinetic investigation suggested the structure of catalysts had important influences on the catalytic activity, thereby proposing the possible reaction mechanism.
基金supported by the National Natural Science Foundation of China(52072035,51631001,21801015,51902023 and 51872030)the Fundamental Research Funds for the Central Universities(2017CX01003)+1 种基金Beijing Institute of Technology Research Fund Program for Young Scholarsthe Joint R&D Plan of Hong Kong,Macao,Taiwan,and Beijing(Z191100001619002).
文摘Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetallic alloy nanoparticles on N-doped carbon support(RuCoMn@NC)via the pyrolysis-adsorption-pyrolysis process using ZIF-67 as a precursor.The RuCoMn@NC catalyst exhibited excellent electrocatalytic performance for the hydrogen evolution reaction(HER)over a wide range of pH and glucose oxidation reaction in alkaline media.It showed exceptional HER activity in alkaline medium,superior to that of the commercial Pt/C catalyst(20 wt%),and good electrochemical stability.Further,a two-electrode alkaline electrolyzer pairing RuCoMn@NC as both cathode and anode was employed,and only a cell voltage of 1.63 V was required to attain a current density of 10 mA cm^(-2)in glucose electrolysis,which is about 270 mV lower than that in the overall water-splitting electrolyzer.This paper provides a promising method for developing efficiently bifunctional electrocatalysts driving redox electrocatalysis,and it would be beneficial to energy-saving electrolytic H_(2) production.