Hepatorenal syndrome(HRS) is defined as a functional renal failure in patients with liver disease with portal hypertension and it constitutes the climax of systemic circulatory changes associated with portal hypertens...Hepatorenal syndrome(HRS) is defined as a functional renal failure in patients with liver disease with portal hypertension and it constitutes the climax of systemic circulatory changes associated with portal hypertension.This term refers to a precisely specified syndrome featuring in particular morphologically intact kidneys,where regulatory mechanisms have minimised glomerular filtration and maximised tubular resorption and urine concentration,which ultimately results in uraemia.The syndrome occurs almost exclusively in patients with ascites.Type 1 HRS develops as a consequence of a severe reduction of effective circulating volume due to both an extreme splanchnic arterial vasodilatation and a reduction of cardiac output.Type 2 HRS is characterised by a stable or slowly progressive renal failure so that its main clinical consequence is not acute renal failure,but refractory ascites,and its impact on prognosis is less negative.Liver transplantation is the most appropriate therapeutic method,nevertheless,only a few patients can receive it.The most suitable "bridge treatments" or treatment for patients ineligible for a liver transplant include terlipressin plus albumin.Terlipressin is at an initial dose of 0.5-1 mg every 4 h by intravenous bolus to 3 mg every 4 h in cases when there is no response.Renal function recovery can be achieved in less than 50% of patients and a considerable decrease in renal function may reoccur even in patients who have been responding to therapy over the short term.Transjugular intrahepatic portosystemic shunt plays only a marginal role in the treatment of HRS.展开更多
Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllabl...Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.展开更多
The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The ...The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.展开更多
[Objective ] The study aimed to provide a theoretical basis for the clinical application of collagen peptide from Cyanea nozakii. [ Method] After acute toxicity test on mice, collagen peptide from C. nozakii were give...[Objective ] The study aimed to provide a theoretical basis for the clinical application of collagen peptide from Cyanea nozakii. [ Method] After acute toxicity test on mice, collagen peptide from C. nozakii were given to mice by continuous intragastric administration for 30 d at the doses of 25, 50, 100 mg/kg, and then the phagocytosis of macrophage, delayed type hypersensitivity (DTH) and serum hemolysin level were determined. [ Result] Collagen peptide from C. nozakii was atoxic or low toxic, and the three immune indices of experimental groups were signifi- canUy higher than those of the control group (treated with same volume of normal saline) at 0.05 or 0.01 level. E Conclusion] Collagen peptide from C. nozakii has a certain immunopotentiation.展开更多
Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apoli...Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the control diet supplemented with vitamins E and C (1.12 IU/g diet a-tocopheryl acetate and 1.65 mg/g ascorbic acid). The mice were further separated into a sedentary group or a group that followed a daily exercise regimen. After 8 weeks on the treatments, the mice were administered a battery of functional tests including tests to measure cognitive and affective function. Results: There was no effect of genotype or treatment on the learning performance in the Morris water maze. In the discriminated avoidance task, APOE4 mice performed better in learning the discrimination component of the task. Overall, exercise improved performance of APOE4 and APOE3 mice on various aspects of the active avoidance task. Antioxidant supplementation improved performance only in the APOE4 mice. On the test for anxiety, APOE4 mice spent more time in the open arms and supplementation with antioxidant reversed that effect. Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.展开更多
A study on the nonspecific immunity of Litopenaeus vannamei ever inhabiting freshwater and seawater was carried out at different molt stages by comparing their total hemocyte count(THC) and respiratory burst(RB) and a...A study on the nonspecific immunity of Litopenaeus vannamei ever inhabiting freshwater and seawater was carried out at different molt stages by comparing their total hemocyte count(THC) and respiratory burst(RB) and activity of phenol oxidase(PO), nitric oxide synthase(NOS) and lysozyme(LY). Two-way ANOVA showed that salinity and molt stage independently affected THC and RB and the activity of PO, NOS and LY of juvenile L. vannamei significantly(P < 0.05). The THC and RB and the activity of NOS gradually increased from the post-molt stages(A and B) to the pre-molt stages(D0–D3), which were common in shrimps inhabiting freshwater and seawater. The activity of PO peaked at the inter-molt stage(C), and touched the lowest at the post-molt stage in freshwater and pre-molt stage in seawater. The activity of LY was stable over the molt cycle. The RB and the activity of PO, NOS and LY of juvenile L. vannamei were significantly lower in freshwater than in seawater; whereas THC was significantly higher in freshwater than in seawater(P < 0.05). It was concluded that the post-molt stage(especially stage A) was critical to shrimp culture, which should be intensively attended when L. vannamei was cultured in freshwater.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
It has been documented that human activities are causing the rapid loss of taxonomic, phylogenetic, genetic and functional diversity in soils. However, it remains unclear how modern intensive rice cultivation impacts ...It has been documented that human activities are causing the rapid loss of taxonomic, phylogenetic, genetic and functional diversity in soils. However, it remains unclear how modern intensive rice cultivation impacts the soil microbiome and its functionality. Here we examined the microbial composition and function differences between a buried Neolithic paddy soil and an adjacent, currently-cultivated paddy soil using high throughput metagenomics technologies. Our results showed that the currently cultivated soil contained about 10-fold more microbial biomass than the buried one. Analyses based on both 16S rRNA genes and functional gene array showed that the currently cultivated soil had significantly higher phylogenetic diversity, but less functional diversity than the buried Neolithic one. The community structures were significantly different between modern and ancient soils, with functional structure shifting towards accelerated organic carbon (C) degradation and nitrogen (N) transfor- mation in the modem soils. This study implies that, modern intensive rice cultivation has substantially altered soil microbial functional structure, leading to functional homogenization and the promotion of soil ecological functions related to the acceleration of nutrient cycling which is necessary for high crop yields.展开更多
Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and...Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and regional carbon and water cycling.Methods A field study was conducted to characterize the seasonal variations in gas fluxes and explore their relationships with abiotic and biotic factors in a small grassland landscape.Daytime carbon and water fluxes including net ecosystem exchange,gross ecosystem productivity,ecosystem respiration and evapotranspiration(ET)were measured for three types of grassland patches over a growing season using the closed chamber method.The key plant trait variables were measured,based on which community weighted mean(CWM)and functional variance(FDvar)were calculated.Important Findings The results showed that the temporal variations in the carbon and water fluxes were regulated by meteorological,soil and community functional variables.Inclusion of the CWM and FDvar of plant trait measures greatly improved the degree of explanation of the predict models.Specific leaf area and leafδ^(13)C content(Lδ^(13)C)were the most important trait variables in affecting the variations of the gas fluxes.CWMs indices had greater importance than FDvar indices in predicting the variation of the C fluxes but FDvar indices were more important for ET than C fluxes.Our findings demonstrated that mass ratio hypothesis and the complementary effects hypothesis are not mutually exclusive but have different relative importance for different ecosystem processes.Community functional traits played important roles in predicting the spatiotemporal variations of carbon and water fluxes in semiarid grassland.展开更多
The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well establi...The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.展开更多
文摘Hepatorenal syndrome(HRS) is defined as a functional renal failure in patients with liver disease with portal hypertension and it constitutes the climax of systemic circulatory changes associated with portal hypertension.This term refers to a precisely specified syndrome featuring in particular morphologically intact kidneys,where regulatory mechanisms have minimised glomerular filtration and maximised tubular resorption and urine concentration,which ultimately results in uraemia.The syndrome occurs almost exclusively in patients with ascites.Type 1 HRS develops as a consequence of a severe reduction of effective circulating volume due to both an extreme splanchnic arterial vasodilatation and a reduction of cardiac output.Type 2 HRS is characterised by a stable or slowly progressive renal failure so that its main clinical consequence is not acute renal failure,but refractory ascites,and its impact on prognosis is less negative.Liver transplantation is the most appropriate therapeutic method,nevertheless,only a few patients can receive it.The most suitable "bridge treatments" or treatment for patients ineligible for a liver transplant include terlipressin plus albumin.Terlipressin is at an initial dose of 0.5-1 mg every 4 h by intravenous bolus to 3 mg every 4 h in cases when there is no response.Renal function recovery can be achieved in less than 50% of patients and a considerable decrease in renal function may reoccur even in patients who have been responding to therapy over the short term.Transjugular intrahepatic portosystemic shunt plays only a marginal role in the treatment of HRS.
文摘Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.
文摘The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.
文摘[Objective ] The study aimed to provide a theoretical basis for the clinical application of collagen peptide from Cyanea nozakii. [ Method] After acute toxicity test on mice, collagen peptide from C. nozakii were given to mice by continuous intragastric administration for 30 d at the doses of 25, 50, 100 mg/kg, and then the phagocytosis of macrophage, delayed type hypersensitivity (DTH) and serum hemolysin level were determined. [ Result] Collagen peptide from C. nozakii was atoxic or low toxic, and the three immune indices of experimental groups were signifi- canUy higher than those of the control group (treated with same volume of normal saline) at 0.05 or 0.01 level. E Conclusion] Collagen peptide from C. nozakii has a certain immunopotentiation.
基金supported by grant MRG-10-173988 and donation from the Pine Family Foundation
文摘Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the control diet supplemented with vitamins E and C (1.12 IU/g diet a-tocopheryl acetate and 1.65 mg/g ascorbic acid). The mice were further separated into a sedentary group or a group that followed a daily exercise regimen. After 8 weeks on the treatments, the mice were administered a battery of functional tests including tests to measure cognitive and affective function. Results: There was no effect of genotype or treatment on the learning performance in the Morris water maze. In the discriminated avoidance task, APOE4 mice performed better in learning the discrimination component of the task. Overall, exercise improved performance of APOE4 and APOE3 mice on various aspects of the active avoidance task. Antioxidant supplementation improved performance only in the APOE4 mice. On the test for anxiety, APOE4 mice spent more time in the open arms and supplementation with antioxidant reversed that effect. Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.
基金supported by a project of The Major State Basic Research of China (2009CB118706)
文摘A study on the nonspecific immunity of Litopenaeus vannamei ever inhabiting freshwater and seawater was carried out at different molt stages by comparing their total hemocyte count(THC) and respiratory burst(RB) and activity of phenol oxidase(PO), nitric oxide synthase(NOS) and lysozyme(LY). Two-way ANOVA showed that salinity and molt stage independently affected THC and RB and the activity of PO, NOS and LY of juvenile L. vannamei significantly(P < 0.05). The THC and RB and the activity of NOS gradually increased from the post-molt stages(A and B) to the pre-molt stages(D0–D3), which were common in shrimps inhabiting freshwater and seawater. The activity of PO peaked at the inter-molt stage(C), and touched the lowest at the post-molt stage in freshwater and pre-molt stage in seawater. The activity of LY was stable over the molt cycle. The RB and the activity of PO, NOS and LY of juvenile L. vannamei were significantly lower in freshwater than in seawater; whereas THC was significantly higher in freshwater than in seawater(P < 0.05). It was concluded that the post-molt stage(especially stage A) was critical to shrimp culture, which should be intensively attended when L. vannamei was cultured in freshwater.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15020302, XDB15020402)National Natural Science Foundation of China (41090282)
文摘It has been documented that human activities are causing the rapid loss of taxonomic, phylogenetic, genetic and functional diversity in soils. However, it remains unclear how modern intensive rice cultivation impacts the soil microbiome and its functionality. Here we examined the microbial composition and function differences between a buried Neolithic paddy soil and an adjacent, currently-cultivated paddy soil using high throughput metagenomics technologies. Our results showed that the currently cultivated soil contained about 10-fold more microbial biomass than the buried one. Analyses based on both 16S rRNA genes and functional gene array showed that the currently cultivated soil had significantly higher phylogenetic diversity, but less functional diversity than the buried Neolithic one. The community structures were significantly different between modern and ancient soils, with functional structure shifting towards accelerated organic carbon (C) degradation and nitrogen (N) transfor- mation in the modem soils. This study implies that, modern intensive rice cultivation has substantially altered soil microbial functional structure, leading to functional homogenization and the promotion of soil ecological functions related to the acceleration of nutrient cycling which is necessary for high crop yields.
基金supported by the National Key Research and Development Program of China(no.2016YFC0501602)International Partnership Program(no.121311KYSB20170004)of Chinese Academy of Sciences.
文摘Aims Accurate prediction of spatiotemporal variations in carbon and water fluxes of heterogeneous landscape is critical to comprehensively address the effects of climate change and vegetation dynamics on landscape and regional carbon and water cycling.Methods A field study was conducted to characterize the seasonal variations in gas fluxes and explore their relationships with abiotic and biotic factors in a small grassland landscape.Daytime carbon and water fluxes including net ecosystem exchange,gross ecosystem productivity,ecosystem respiration and evapotranspiration(ET)were measured for three types of grassland patches over a growing season using the closed chamber method.The key plant trait variables were measured,based on which community weighted mean(CWM)and functional variance(FDvar)were calculated.Important Findings The results showed that the temporal variations in the carbon and water fluxes were regulated by meteorological,soil and community functional variables.Inclusion of the CWM and FDvar of plant trait measures greatly improved the degree of explanation of the predict models.Specific leaf area and leafδ^(13)C content(Lδ^(13)C)were the most important trait variables in affecting the variations of the gas fluxes.CWMs indices had greater importance than FDvar indices in predicting the variation of the C fluxes but FDvar indices were more important for ET than C fluxes.Our findings demonstrated that mass ratio hypothesis and the complementary effects hypothesis are not mutually exclusive but have different relative importance for different ecosystem processes.Community functional traits played important roles in predicting the spatiotemporal variations of carbon and water fluxes in semiarid grassland.
基金supported by the National Natural Science Foundation of China(U1609219,51632008,61721005,51432001and 51772268)Zhejiang Provincial Natural Science Foundation(LD18E020001)
文摘The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.