This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micr...This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.展开更多
A growing number of three-dimensional(3D)-print- ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, wit...A growing number of three-dimensional(3D)-print- ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering(SLS) and fused deposition modeling(FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.展开更多
Rapid prototyping technology can greatly improve the actual processing industrial prototype; this paper introduces the main principle, characteristics and technology of rapid prototype manufacturing. The current rapid...Rapid prototyping technology can greatly improve the actual processing industrial prototype; this paper introduces the main principle, characteristics and technology of rapid prototype manufacturing. The current rapid prototype manufacturing products and production problems are analyzed. Because of the direct metal forming process have the characteristic of point by point, surfacing with stack molding manufacturing layer by layer, so it is suitable for complex shape parts two-dimensional or three-dimensional functionally gradient materials manufacturing.展开更多
This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Pr...This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.展开更多
文摘This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.
基金Singapore National Research Foundation (NRF) for funding the Singapore Centre for 3D Printing (SC3DP)
文摘A growing number of three-dimensional(3D)-print- ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering(SLS) and fused deposition modeling(FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.
文摘Rapid prototyping technology can greatly improve the actual processing industrial prototype; this paper introduces the main principle, characteristics and technology of rapid prototype manufacturing. The current rapid prototype manufacturing products and production problems are analyzed. Because of the direct metal forming process have the characteristic of point by point, surfacing with stack molding manufacturing layer by layer, so it is suitable for complex shape parts two-dimensional or three-dimensional functionally gradient materials manufacturing.
基金the National Natural Science Foundation of China (21290194)
文摘This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.