The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resti...The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resting-state FC, numerous models have been proposed. Here, we use a simple dynamic model based on the susceptible-infected-susceptible(SIS) model along the shortest paths to predict FC from SC. Unlike the previous dynamic model based on SIS theory, we focus on the shortest paths as the principal routes to transmit signals rather than the empirical structural brain network. We first simplify the structurally connected network into an efficient propagation network according to the shortest paths and then combine SIS infection theory with the efficient network to simulate the dynamic process of human brain activity. Finally, we perform an extensive comparison study between the dynamic models embedded in the efficient network, the dynamic model embedded in the structurally connected network and dynamic mean field(DMF) model predicting FC from SC. Extensive experiments on two different resolution datasets indicate that i) the dynamic model simulated on the shortest paths can predict FC among both structurally connected and unconnected node pairs; ii) though there are fewer links in the efficient propagation network, the predictive power of FC derived from the efficient propagation network is better than the dynamic model simulated on a structural brain network; iii) in comparison with the DMF model,the dynamic model embedded in the shortest paths is found to perform better to predict FC.展开更多
Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-gene...Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.展开更多
As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a rel...As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.展开更多
基金supported by China Scholarship Council(201306455001)the National Natural Science Foundation of China(61271407)the Fundamental Research Funds for the Central Universities(16CX06050A)
文摘The complex relationship between structural connectivity(SC) and functional connectivity(FC) of human brain networks is still a critical problem in neuroscience. In order to investigate the role of SC in shaping resting-state FC, numerous models have been proposed. Here, we use a simple dynamic model based on the susceptible-infected-susceptible(SIS) model along the shortest paths to predict FC from SC. Unlike the previous dynamic model based on SIS theory, we focus on the shortest paths as the principal routes to transmit signals rather than the empirical structural brain network. We first simplify the structurally connected network into an efficient propagation network according to the shortest paths and then combine SIS infection theory with the efficient network to simulate the dynamic process of human brain activity. Finally, we perform an extensive comparison study between the dynamic models embedded in the efficient network, the dynamic model embedded in the structurally connected network and dynamic mean field(DMF) model predicting FC from SC. Extensive experiments on two different resolution datasets indicate that i) the dynamic model simulated on the shortest paths can predict FC among both structurally connected and unconnected node pairs; ii) though there are fewer links in the efficient propagation network, the predictive power of FC derived from the efficient propagation network is better than the dynamic model simulated on a structural brain network; iii) in comparison with the DMF model,the dynamic model embedded in the shortest paths is found to perform better to predict FC.
文摘Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.
基金supported by the ZTE Corp under Grant CON1412150018the Natural Science Foundation of China under Grant 61572389 and 61471361
文摘As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.