In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global conv...In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.展开更多
The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing...The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing Newton-type algorithm is proposed for solving the generalized complementarity problem.Under suitable assumptions, the proposed algorithm is well-defined and global convergent.展开更多
Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm...Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.展开更多
We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empi...We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.展开更多
基金Supported by the National Natural Science Foundation of China(10571106) Supported by the Fundamental Research Funds for the Central Universities(10CX04044A)
文摘In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.
基金Supported by LIU Hui Centre for Applied Mathematics of Nankai University and Tianjin University
文摘The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing Newton-type algorithm is proposed for solving the generalized complementarity problem.Under suitable assumptions, the proposed algorithm is well-defined and global convergent.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69735010) the Doctorate Foundation of Xi' an Jiaotong University.
文摘Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.
基金supported by Natural Sciences and the Engineering Research Council of Canada (Grant No. 105557-2012)National Natural Science Foundation for Young Scientists of China (Grant No. 11201108)+1 种基金the National Statistical Research Plan Project (Grant No. 2012LZ009)the Humanities and Social Sciences Project from Ministry of Education of China (Grant No. 12YJC910007)
文摘We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.