Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t...Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.展开更多
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self...The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.展开更多
According to the conductivity test results,it is found that oil conductivity increases with an increasing additive content,and the turbidity of engine oil is also augmented with an increasing additive content.After te...According to the conductivity test results,it is found that oil conductivity increases with an increasing additive content,and the turbidity of engine oil is also augmented with an increasing additive content.After testing the turbidity and stability of oils containing the typical conventional calcium sulfonate,the overbased calcium sulfonate and the mixture of the above two calcium sulfonates,the results show that at the same amount of additives used,the oil with a higher turbidity demonstrated a worse stability.A nonionic dispersant that was added into lube oils at a definite concentration could improve the detergent compatibility.For this reason,the sediment volume in three kinds of oils all decreased obviously,resulting in successful improvement of storage stability of marine engine oils.展开更多
The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, o...The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, on copper extraction and iron extraction of chalcopyrite pressure leaching were investigated. The leaching rate is accelerated by increasing the leaching temperature from 120 to 150 ℃ and increasing oxygen partial pressure to 0.7 MPa. The release of iron is faster than that of copper due to the formation of iron-depleted sulfides. Under the optimal leaching conditions without calcium lignosulphonate, the copper and iron extraction rates are 79% and 81%, respectively. The leaching process is mixedly controlled by surface reaction and product layer diffusion with an activation energy of 36.61 k J/mol. Calcium lignosulphonate can effectively remove the sulfur passive layer, and the activation energy is 45.59 k J/mol, suggesting that the leaching process with calcium lignosulphonate is controlled by surface chemical reactions. Elemental sulfur is the main leaching product, which is mixed with iron-depleted sulfides and leads to the passivation of chalcopyrite. Electrochemical studies suggest that increasing the oxygen partial pressure leads to increasing the cathodic reaction rate and weakening the passivation of chalcopyrite.展开更多
In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have...In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have been reviewed briefly and systematically. It was emphasized on basic theories, such as formation of globular grains, theology, high pressure solidification and plastic deformation and applications, such as material design, preparation of semi-solid billets (slurries), thixoforming and application status, which are based on the advantage of semi-solid processing. The results show that the gap of SSP between world level and China exists, especially in application technologies, including market recognition, application fields exploiting, developing of billets (slurries) preparation technologies with low cost and special equipments. The prospect of semi-solid forming development path in China is presented. And we hope that application of SSP has great new breakthrough and development and China wilt be changed from a large metal processing country to a powerful metal processing country.展开更多
When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA produ...When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China. Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1 ) was applied alone or in combination with HA (at 254.8 kg HA ha-1 ) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter), and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods. Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P, acid-extractable P and Olsen P in soil. The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.展开更多
Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanis...Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanism of Mg-calcite mesocrystals in the ocean is not clear yet.We report here the synthesis of corn-like Mg-calcite mesocrystals from pure amorphous calcium carbonate(ACC)via a facile method only by using Ca^(2+)and Mg^(2+).The obtained Mg-calcite is composed of many nanocubes with common crystallographic orientation,which shows very good single crystal feature.In the crystallizing procedure,the ACC nanospheres rapidly agglomerate into Mg-calcite corn-like mesocrystal by oriented attachment(OA)in a certain direction,which belongs to the non-classical nucleation.By this method,the molar ratio of Ca^(2+)and Mg^(2+)plays a vital role in the whole crystallization procedure,which may shed a new light on disclosing the mechanism behind for the effect of seawater in the formation of biological Mg-calcite in nature.展开更多
基金Project(2008BAB32B06) supported by the Key Projects in the National Science and Technology Pillar Program during the 11th Five-year Plan PeriodProject(2009ybfz20) supported by the Program for Excellent Doctor’s Degree Paper in Central South University,ChinaProject(1343/74333001114) supported by the Postgraduate’s Paper Innovation Fund of Hunan Province,China
文摘Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.
基金Project(2018YFC0705404)supported by the National Key Technology Research and Development of ChinaProjects(51878480,51678442,51878481,51878496)supported by the National Natural Science Foundation of China+1 种基金Project(U1534207)supported by the National High-speed Train Union Fund,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.
文摘According to the conductivity test results,it is found that oil conductivity increases with an increasing additive content,and the turbidity of engine oil is also augmented with an increasing additive content.After testing the turbidity and stability of oils containing the typical conventional calcium sulfonate,the overbased calcium sulfonate and the mixture of the above two calcium sulfonates,the results show that at the same amount of additives used,the oil with a higher turbidity demonstrated a worse stability.A nonionic dispersant that was added into lube oils at a definite concentration could improve the detergent compatibility.For this reason,the sediment volume in three kinds of oils all decreased obviously,resulting in successful improvement of storage stability of marine engine oils.
基金supported by the National Natural Science Foundation of China(Nos.51574072,51434001)the Fundamental Research Funds for the Central Universities,China(No.2025028)。
文摘The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, on copper extraction and iron extraction of chalcopyrite pressure leaching were investigated. The leaching rate is accelerated by increasing the leaching temperature from 120 to 150 ℃ and increasing oxygen partial pressure to 0.7 MPa. The release of iron is faster than that of copper due to the formation of iron-depleted sulfides. Under the optimal leaching conditions without calcium lignosulphonate, the copper and iron extraction rates are 79% and 81%, respectively. The leaching process is mixedly controlled by surface reaction and product layer diffusion with an activation energy of 36.61 k J/mol. Calcium lignosulphonate can effectively remove the sulfur passive layer, and the activation energy is 45.59 k J/mol, suggesting that the leaching process with calcium lignosulphonate is controlled by surface chemical reactions. Elemental sulfur is the main leaching product, which is mixed with iron-depleted sulfides and leads to the passivation of chalcopyrite. Electrochemical studies suggest that increasing the oxygen partial pressure leads to increasing the cathodic reaction rate and weakening the passivation of chalcopyrite.
文摘In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have been reviewed briefly and systematically. It was emphasized on basic theories, such as formation of globular grains, theology, high pressure solidification and plastic deformation and applications, such as material design, preparation of semi-solid billets (slurries), thixoforming and application status, which are based on the advantage of semi-solid processing. The results show that the gap of SSP between world level and China exists, especially in application technologies, including market recognition, application fields exploiting, developing of billets (slurries) preparation technologies with low cost and special equipments. The prospect of semi-solid forming development path in China is presented. And we hope that application of SSP has great new breakthrough and development and China wilt be changed from a large metal processing country to a powerful metal processing country.
基金Supported by the Shandong Provincial Doctoral Foundation of China(Nos.2007BS08013 and BS2012NY011)
文摘When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil, HA may affect the movement of P. A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China. Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1 ) was applied alone or in combination with HA (at 254.8 kg HA ha-1 ) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter), and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods. Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P, acid-extractable P and Olsen P in soil. The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.
基金the National Natural Science Foundation of China(21701162,21761132008 and 51702312)Anhui Provincial Natural Science Foundation(1808085MB27)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(21521001)the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-SLH036)the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(2015HSC-UE007)。
文摘Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanism of Mg-calcite mesocrystals in the ocean is not clear yet.We report here the synthesis of corn-like Mg-calcite mesocrystals from pure amorphous calcium carbonate(ACC)via a facile method only by using Ca^(2+)and Mg^(2+).The obtained Mg-calcite is composed of many nanocubes with common crystallographic orientation,which shows very good single crystal feature.In the crystallizing procedure,the ACC nanospheres rapidly agglomerate into Mg-calcite corn-like mesocrystal by oriented attachment(OA)in a certain direction,which belongs to the non-classical nucleation.By this method,the molar ratio of Ca^(2+)and Mg^(2+)plays a vital role in the whole crystallization procedure,which may shed a new light on disclosing the mechanism behind for the effect of seawater in the formation of biological Mg-calcite in nature.