Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably u...Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable airinsensitive biphenol derivative cathode, 3,30,5,50-tetramethylaminemethylene-4,40-biphenol(TABP), with high solubility(>1.5 mol L^(-1)) and redox potential(0.91 V vs. SHE) is designed and synthesized by a scalable one-step method. Paring with silicotungstic acid(SWO), an SWO/TABP flow battery shows a stable performance of zero capacity decay over 900 cycles under the air atmosphere. Further, an SWO/TABP flow battery manifests a high rate performance with an energy efficiency of 85% at a current density of60 m A cm^(-2) and a very high volumetric capacity of more than 47 Ah L^(-1). This work provides a new and practical option for next-generation practical large-scale energy storage.展开更多
基金The authors acknowledge financial support from the National Natural Science Foundation of China(21925804,21935003)CASDOE Collaborative Project(121421KYSB20170032)+1 种基金CAS Engineering Laboratory for Electrochemical Energy Storage,Liaoning Revitalization Talents Program(XLYC1802050)China and DICP funding,China(ZZBS201707)。
文摘Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable airinsensitive biphenol derivative cathode, 3,30,5,50-tetramethylaminemethylene-4,40-biphenol(TABP), with high solubility(>1.5 mol L^(-1)) and redox potential(0.91 V vs. SHE) is designed and synthesized by a scalable one-step method. Paring with silicotungstic acid(SWO), an SWO/TABP flow battery shows a stable performance of zero capacity decay over 900 cycles under the air atmosphere. Further, an SWO/TABP flow battery manifests a high rate performance with an energy efficiency of 85% at a current density of60 m A cm^(-2) and a very high volumetric capacity of more than 47 Ah L^(-1). This work provides a new and practical option for next-generation practical large-scale energy storage.