The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil f...The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.展开更多
While the recent release of the Chinese tree shrew (Tupaia belangeri chinensis) genome has made the tree shrew an increasingly viable experimental animal model for biomedical research, further study of the genome ma...While the recent release of the Chinese tree shrew (Tupaia belangeri chinensis) genome has made the tree shrew an increasingly viable experimental animal model for biomedical research, further study of the genome may facilitate new insights into the applicability of this model. For example, though the tree shrew has a rapid rate of speed and strong jumping ability, there are limited studies on its locomotion ability. In this study we used the available Chinese tree shrew genome information and compared the evolutionary pattern of 407 locomotion system related orthologs among five mammals (human, rhesus monkey, mouse, rat and dog) and the Chinese tree shrew. Our analyses identified 29 genes with significantly high co (Ka/Ks ratio) values and 48 amino acid sites in 14 genes showed significant evidence of positive selection in the Chinese tree shrew. Some of these positively selected genes, e.g. HOXA6 (homeobox A6) and AVP (arginine vasopressin), play important roles in muscle contraction or skeletal morphogenesis. These results provide important clues in understanding the genetic bases of locomotor adaptation in the Chinese tree shrew.展开更多
This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, an...This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a lo...Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a load change of the power unit.Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions.To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall,a numerical model of pipeline heating was proposed.To determine the transient temperature of the steam and pipeline wall the finite volume method(FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time.The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam.The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation.Based on the calculated temperature distribution,thermal stresses were determined.The friction factor was calculated using the correlations of Churchill and Haaland,which were proposed for pipes with a rough inner surface.To assess the accuracy of the proposed model,numerical calculations were also performed for the thin-walled pipe,and the results were compared to the exact analytical solution.Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory.The paper presents examples of the determination of the transient temperature of the steam and the wall.展开更多
文摘The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.
基金Foundation items: This study was supported by the National 863 Project of China (2012AA021801, 2012AA022402) and grants from Chinese Academy of Sciences (KSCX2-EW-R-11, KSCX2-EW-J23) and Yunnan Province (2013FB071)Acknowledgements: We are grateful to Dr. Dong WANG for helpful discussion.
文摘While the recent release of the Chinese tree shrew (Tupaia belangeri chinensis) genome has made the tree shrew an increasingly viable experimental animal model for biomedical research, further study of the genome may facilitate new insights into the applicability of this model. For example, though the tree shrew has a rapid rate of speed and strong jumping ability, there are limited studies on its locomotion ability. In this study we used the available Chinese tree shrew genome information and compared the evolutionary pattern of 407 locomotion system related orthologs among five mammals (human, rhesus monkey, mouse, rat and dog) and the Chinese tree shrew. Our analyses identified 29 genes with significantly high co (Ka/Ks ratio) values and 48 amino acid sites in 14 genes showed significant evidence of positive selection in the Chinese tree shrew. Some of these positively selected genes, e.g. HOXA6 (homeobox A6) and AVP (arginine vasopressin), play important roles in muscle contraction or skeletal morphogenesis. These results provide important clues in understanding the genetic bases of locomotor adaptation in the Chinese tree shrew.
文摘This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
文摘Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a load change of the power unit.Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions.To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall,a numerical model of pipeline heating was proposed.To determine the transient temperature of the steam and pipeline wall the finite volume method(FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time.The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam.The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation.Based on the calculated temperature distribution,thermal stresses were determined.The friction factor was calculated using the correlations of Churchill and Haaland,which were proposed for pipes with a rough inner surface.To assess the accuracy of the proposed model,numerical calculations were also performed for the thin-walled pipe,and the results were compared to the exact analytical solution.Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory.The paper presents examples of the determination of the transient temperature of the steam and the wall.