期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“除了”句式加合、排除义的句法、语义、语用分析
1
作者 张智义 《南开语言学刊》 2024年第1期68-78,共11页
既往针对汉语“除了”句式的研究主要围绕加合义和排除义的判定进行,但依据句法标记判断并不可靠,而依据前后半句的逻辑语义真值进行判断难免有循环论证之嫌。有基于此,本研究意在揭示“除了”句式加合或排除意义判定的语义语用机制以... 既往针对汉语“除了”句式的研究主要围绕加合义和排除义的判定进行,但依据句法标记判断并不可靠,而依据前后半句的逻辑语义真值进行判断难免有循环论证之嫌。有基于此,本研究意在揭示“除了”句式加合或排除意义判定的语义语用机制以及在句法结构上的体现:本研究认为,依据句法标记,“除了”句式的后半句存在极性、相反、添加、总括义标记,极性和相反义形成“除了”句式的排除义,添加和总括义形成“除了”句式的加合义。语用看,排除义和加合义均由“除了”词库层面的减除义,依据集合范畴,按照一定逻辑运算程序,语用推理而来。在从极性、相反义到排除义的运算中,会话含义机制起作用;在从添加、总括义到加合义的运算中,语用预设机制起作用。在句法上,加合义“除了”句式的相关语法标记位于动词短语的附加语位置,排除义“除了”句式的相关语法标记位于标句成分的外标示语位置。 展开更多
关键词 “除了”句式 加合义 排除 句法语语用分析
原文传递
Parameter estimation methods in generalized weighted functional mean combining forecasting model
2
作者 万玉成 盛昭瀚 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期117-121,共5页
A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programmi... A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods. 展开更多
关键词 Forecasting Quadratic programming
下载PDF
Fitting Generalized Additive Logistic Regression Model with GAM Procedure
3
作者 Suresh Kumar Sharma Rashmi Aggarwal Kanchan Jain 《Journal of Mathematics and System Science》 2013年第9期442-453,共12页
In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes... In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis. 展开更多
关键词 Logistic model iterative generalized additive model weighted least squares cubic splines.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部