This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different hei...This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different heights, three of which are monolithically connected to the deck. To understand the roles of the different pier sizes in the overall behavior, several analyses were carried out in the longitudinal direction: (1) linear dynamic approach; (2) non-linear static approach; (3) non-linear dynamic approach. Linear dynamic analysis was made in order to design the bridge for the ultimate limit state considering the largest value of the ductility factor. No safety verification was made for the other loads. Using non-linear static analyses, sensitivity was performed to check the influence of reinforcement quantities of each pier on the overall behavior of the bridge under Lisbon seismic action. For the non-linear dynamic approach, a series of strong motion records compatible with the EC-8 spectrum for Lisbon area were generated. The very same combinations of reinforcement quantities were studied. Comparisons between static and dynamic non-linear analysis were made to confirm the validity of the first one in the case under analysis, where the period of vibration is quite high.展开更多
文摘This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different heights, three of which are monolithically connected to the deck. To understand the roles of the different pier sizes in the overall behavior, several analyses were carried out in the longitudinal direction: (1) linear dynamic approach; (2) non-linear static approach; (3) non-linear dynamic approach. Linear dynamic analysis was made in order to design the bridge for the ultimate limit state considering the largest value of the ductility factor. No safety verification was made for the other loads. Using non-linear static analyses, sensitivity was performed to check the influence of reinforcement quantities of each pier on the overall behavior of the bridge under Lisbon seismic action. For the non-linear dynamic approach, a series of strong motion records compatible with the EC-8 spectrum for Lisbon area were generated. The very same combinations of reinforcement quantities were studied. Comparisons between static and dynamic non-linear analysis were made to confirm the validity of the first one in the case under analysis, where the period of vibration is quite high.