The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key managemen...The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.展开更多
Wireless Sensor Networks (WSNs) are being deployed for a wide variety of applications and the security problems of them have received considerable attention. Considering the limitations of power, computation capabilit...Wireless Sensor Networks (WSNs) are being deployed for a wide variety of applications and the security problems of them have received considerable attention. Considering the limitations of power, computation capability and storage resources, this paper proposed an efficient defense against collusion scheme based on elliptic curve cryptography for wireless sensor networks in order to solve the problems that sensor node-key leaking and adversaries make compromised nodes as their collusions to launch new attack. In the proposed scheme, the group-key distribution strategy is employed to compute the private key of each sensor node, and the encryption and decryption algorithms are constructed based on Elliptic Curve Cryptography (ECC). The command center (node) only needs to broadcast a controlling header with three group elements, and the authorized sensor node can correctly recover the session key and use it to decrypt the broadcasting message. Analysis and proof of the proposed scheme's efficiency and security show that the proposed scheme can resist the k-collusion attack efficiently.展开更多
基金Project(61100201) supported by National Natural Science Foundation of ChinaProject(12ZZ019) supported by Technology Innovation Research Program,Shang Municipal Education Commission,China+1 种基金Project(LYM11053) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province,ChinaProject(NCET-12-0358) supported by New Century Excellent Talentsin University,Ministry of Education,China
文摘The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.
基金Supported by the Six Great Talent Peak Plan of Jiangsu Province (No.06-E-044)the "Qinlan Project" Plan of Jiangsu Province 2006
文摘Wireless Sensor Networks (WSNs) are being deployed for a wide variety of applications and the security problems of them have received considerable attention. Considering the limitations of power, computation capability and storage resources, this paper proposed an efficient defense against collusion scheme based on elliptic curve cryptography for wireless sensor networks in order to solve the problems that sensor node-key leaking and adversaries make compromised nodes as their collusions to launch new attack. In the proposed scheme, the group-key distribution strategy is employed to compute the private key of each sensor node, and the encryption and decryption algorithms are constructed based on Elliptic Curve Cryptography (ECC). The command center (node) only needs to broadcast a controlling header with three group elements, and the authorized sensor node can correctly recover the session key and use it to decrypt the broadcasting message. Analysis and proof of the proposed scheme's efficiency and security show that the proposed scheme can resist the k-collusion attack efficiently.