An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superhe...An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.展开更多
Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random e...Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random experiments obtained by software were carried out. In experimental stage, the molten aluminum alloy was poured on an inclined plate with different lengths of 100, 300 and 500 mm set at 30°, 45° and 60° of slope angles respectively. Three different pouring temperatures of 660, 680 and 700 ℃ were also used. After the casting process, the partial re-melting treatment was carried out at 590 ℃ for different isothermal time of 5, 8 or 12 min. The combined effect of these factors on globularity of the primary α(Al) crystals was investigated and optimized using DODE. The results indicated that the primary dendritic phase in the conventionally cast A356 alloy was transformed into a non-dendritic one in ingots cast over a cooling plate. The CS processed samples exhibited a globular structure only after re-heating to semi-solid region. The optimum values of pouring temperature, cooling length, slope angle and isothermal holding time were found to be 660 ℃, 360 mm, 48°, and 9 min, respectively. In this case, the globularity of primary crystals was obtained, about 0.91. The obtained model is highly significant with a correlation coefficient of 0.9860.展开更多
文摘An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.
文摘Semi-solid processing (SSP) of A356 aluminum alloy was discussed via cooling slope (CS) method. The D-optimal design of experiment (DODE) was employed for experimental design and analysis of results. 38 random experiments obtained by software were carried out. In experimental stage, the molten aluminum alloy was poured on an inclined plate with different lengths of 100, 300 and 500 mm set at 30°, 45° and 60° of slope angles respectively. Three different pouring temperatures of 660, 680 and 700 ℃ were also used. After the casting process, the partial re-melting treatment was carried out at 590 ℃ for different isothermal time of 5, 8 or 12 min. The combined effect of these factors on globularity of the primary α(Al) crystals was investigated and optimized using DODE. The results indicated that the primary dendritic phase in the conventionally cast A356 alloy was transformed into a non-dendritic one in ingots cast over a cooling plate. The CS processed samples exhibited a globular structure only after re-heating to semi-solid region. The optimum values of pouring temperature, cooling length, slope angle and isothermal holding time were found to be 660 ℃, 360 mm, 48°, and 9 min, respectively. In this case, the globularity of primary crystals was obtained, about 0.91. The obtained model is highly significant with a correlation coefficient of 0.9860.