In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed ...In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pretidied volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched. Appropriate reduction of the melt temperature and increase of the pre-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.展开更多
This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar s...This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed. In addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.展开更多
文摘In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pretidied volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched. Appropriate reduction of the melt temperature and increase of the pre-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.
基金Project (No. 50705081) supported by the National Natural Science Foundation of China
文摘This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed. In addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.