Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and s...Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and strain rates of 0.0003?1.0 s?1. The constitutive equation was established, power dissipation (η) maps and hot processing maps were plotted. The microstructure evolution and dislocation distribution of domains with different values of η in power dissipation maps were also observed. The results show that the flow stress increases with decreasing temperature and increasing strain rate. The activation energy of the spray forming LSHR alloy is 1243.86 kJ/mol. When the value of η is 0.36 at the strain of 0.5, the domain in the processing map shows characteristics of typical dynamic recrystallization (DRX) and low dislocation density. According to the microstructure evolution and processing maps, the optimum processing condition for good hot workability of spray forming LSHR alloy can be summed up as:temperature range 1110?1150 °C; strain rate range 0.01?0.3 s?1.展开更多
Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the qu...Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally, precise micro prism patterns without pitch error were machined on the large roll mold.展开更多
The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of ste...The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of steel parts. For this, it was designed a full factorial plan at two levels of five independent variables that include the whole processing in two and three cycles, the cold-forming degree and force during the plastic deformation (burnishing), and the temperature and time at the given temperature during the aging. Each cycle is composed of plastic deformation at room temperature plus aging. As dependent variables, the degree and penetration depth of strain hardening were evaluated. Based on the appropriately used set of experimental data, it had been fitted an exponential model for each dependent variables and also a two-degree polynomial fitting of in-depth evolution of microhardness profile was obtained. The amount of cycles and the cold-forming degree are the technological variables of CMTP that influence the most on strain hardening, although other variables also are significant. The microhardness profile highlights that during the CMTP, the strain hardening decreases from the outer bound to the transition zone of the surface layers, where it disappears.展开更多
In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new ...In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.展开更多
In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, plann...In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, planned overhaul, unplanned overhaul, transitional period from unplanned overhaul to normal production (referred for short as unplanned transition) and transitional period from planned overhaul to normal production (referred for short as planned transition). The article takes the analysis of relationship between different states of a certain processing operation and corresponding energy consumptions as a startup point to develop a process energy intensity formula with variables of operating rate, yielding rate and operating frequency, etc. This process energy intensity formula can be used to analyze effectively the pattern of impact exerted by different state variables on energy consumption.展开更多
Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process sys...Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.展开更多
This paper selected lumbers of Manchurian ash (Fraxinus rnandshurica), Manchurian walnut(Juglans mandshurica) and Spruce (Picea jezoensis var.kornarovii) for manufacturing glulam with water-borne polymeric-isocyanate ...This paper selected lumbers of Manchurian ash (Fraxinus rnandshurica), Manchurian walnut(Juglans mandshurica) and Spruce (Picea jezoensis var.kornarovii) for manufacturing glulam with water-borne polymeric-isocyanate adhesive to determine process variables. The process variables that includespecific pressure, pressing time and adhesive application amount influencing the shear strength of the glulam,were investigated through the orthogonal test. The results indicated that optimum process variables forglulam manufacturing were as follows: Specific pressure of 1.5 MPa for Spruce and 2.0 MPa both forManchurian ash and Manchurian walnut, pressing time of 60 min and adhesive application amount of 250 g/m2.展开更多
In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and une...In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a T-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabri- cation. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.展开更多
The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show...The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.展开更多
基金Project(51301143)supported by the National Natural Science Foundation of ChinaProject(2014M560727)supported by the National Postdoctoral Foundation of China+1 种基金Project(2015GZ0228)supported by the Sichuan Province Science-Technology Support Plan,ChinaProject(2682014CX001)supported by the Science and Technology Innovation Project of SWJTU University,China
文摘Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and strain rates of 0.0003?1.0 s?1. The constitutive equation was established, power dissipation (η) maps and hot processing maps were plotted. The microstructure evolution and dislocation distribution of domains with different values of η in power dissipation maps were also observed. The results show that the flow stress increases with decreasing temperature and increasing strain rate. The activation energy of the spray forming LSHR alloy is 1243.86 kJ/mol. When the value of η is 0.36 at the strain of 0.5, the domain in the processing map shows characteristics of typical dynamic recrystallization (DRX) and low dislocation density. According to the microstructure evolution and processing maps, the optimum processing condition for good hot workability of spray forming LSHR alloy can be summed up as:temperature range 1110?1150 °C; strain rate range 0.01?0.3 s?1.
基金Project (2010-0008-277) supported by NCRC (National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology, Korea
文摘Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally, precise micro prism patterns without pitch error were machined on the large roll mold.
文摘The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of steel parts. For this, it was designed a full factorial plan at two levels of five independent variables that include the whole processing in two and three cycles, the cold-forming degree and force during the plastic deformation (burnishing), and the temperature and time at the given temperature during the aging. Each cycle is composed of plastic deformation at room temperature plus aging. As dependent variables, the degree and penetration depth of strain hardening were evaluated. Based on the appropriately used set of experimental data, it had been fitted an exponential model for each dependent variables and also a two-degree polynomial fitting of in-depth evolution of microhardness profile was obtained. The amount of cycles and the cold-forming degree are the technological variables of CMTP that influence the most on strain hardening, although other variables also are significant. The microhardness profile highlights that during the CMTP, the strain hardening decreases from the outer bound to the transition zone of the surface layers, where it disappears.
基金Projects(50471102,50671089) supported by the National Natural Science Foundation of China
文摘In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.
文摘In a production process, the actual energy consumption is greatly affected by the production state. Certain processing operations are classified into six states, including normal production, abnormal production, planned overhaul, unplanned overhaul, transitional period from unplanned overhaul to normal production (referred for short as unplanned transition) and transitional period from planned overhaul to normal production (referred for short as planned transition). The article takes the analysis of relationship between different states of a certain processing operation and corresponding energy consumptions as a startup point to develop a process energy intensity formula with variables of operating rate, yielding rate and operating frequency, etc. This process energy intensity formula can be used to analyze effectively the pattern of impact exerted by different state variables on energy consumption.
文摘Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.
文摘This paper selected lumbers of Manchurian ash (Fraxinus rnandshurica), Manchurian walnut(Juglans mandshurica) and Spruce (Picea jezoensis var.kornarovii) for manufacturing glulam with water-borne polymeric-isocyanate adhesive to determine process variables. The process variables that includespecific pressure, pressing time and adhesive application amount influencing the shear strength of the glulam,were investigated through the orthogonal test. The results indicated that optimum process variables forglulam manufacturing were as follows: Specific pressure of 1.5 MPa for Spruce and 2.0 MPa both forManchurian ash and Manchurian walnut, pressing time of 60 min and adhesive application amount of 250 g/m2.
基金Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51221004), and the National Natural Science Foundation of Chi:na (Nos. 51175461 and 51105335)
文摘In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a T-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabri- cation. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.
文摘The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.