Zr was added to Ti−Nb−Fe alloys to develop low elastic modulus and high strengthβ-Ti alloys for biomedical applications.Ingots of Ti−12Nb−2Fe−(2,4,6,8,10)Zr(at.%)were prepared by arc melting and then subjected to hom...Zr was added to Ti−Nb−Fe alloys to develop low elastic modulus and high strengthβ-Ti alloys for biomedical applications.Ingots of Ti−12Nb−2Fe−(2,4,6,8,10)Zr(at.%)were prepared by arc melting and then subjected to homogenization,cold rolling,and solution treatments.The phases and microstructures of the alloys were analyzed by optical microscopy,X-ray diffraction,and transmission electron microscopy.The mechanical properties were measured by tensile tests.The results indicate that Zr and Fe cause a remarkable solid-solution strengthening effect on the alloys;thus,all the alloys show yield and ultimate tensile strengths higher than 510 MPa and 730 MPa,respectively.Zr plays a weak role in the deformation mechanism.Further,twinning occurs in all the deformed alloys and is beneficial to both strength and plasticity.Ti−12Nb−2Fe−(8,10)Zr alloys with metastableβphases show low elastic modulus,high tensile strength,and good plasticity and are suitable candidate materials for biomedical implants.展开更多
The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger s...The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.展开更多
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile...The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.展开更多
Three characteristic points in the deformation history of a fractured tensile specimen are selected tocalculate two values of n( n1 and n2 ) to represent the hardening ability of material during the homogeneous plas-t...Three characteristic points in the deformation history of a fractured tensile specimen are selected tocalculate two values of n( n1 and n2 ) to represent the hardening ability of material during the homogeneous plas-tic deformation and the following large plastic deformation. Experimental results obtained with mild streel andred copper show that n determined using the three-point method proposed is better to describe the hardening a-bility of material. It is therefore concluded that three-point method can be used to describe the hardening prop-erty of material during both homogeneous deformation and large plastic deformation.展开更多
A series of ferrite/bainite(F/B) multi-phase steels containing different volume fractions of ferrite were obtained.The effect of soft phase(ferrite) content on the work-hardening behavior of the steel was studied by t...A series of ferrite/bainite(F/B) multi-phase steels containing different volume fractions of ferrite were obtained.The effect of soft phase(ferrite) content on the work-hardening behavior of the steel was studied by the finite element simulation with V-BCC model and the modified Crussard-Jaoul(C-J) analysis.It is shown that the multi-phase steels have an excellent anti-deformation ability,such as higher stress ratio(R t1.5 /R t0.5),higher uniform elongation and lower yield to tensile strength ratio.For the F/B multi-phase steels,increasing the proportion of ferrite would help to increase the uniform elongation.However,introducing much more fraction of ferrite would not be helpful to improve the stress ratio of multi-phase steel.The ferrite plastic strain constrained by bainite would be beneficial to increasing the work hardening rate.The optimum proportion of ferrite will result both higher stress ratio and uniform elongation in multi-phase steel.展开更多
With the decrease of the device size,soft error induced by various particles becomes a serious problem for advanced CMOS technologies.In this paper,we review the evolution of two main aspects of soft error-SEU and SET...With the decrease of the device size,soft error induced by various particles becomes a serious problem for advanced CMOS technologies.In this paper,we review the evolution of two main aspects of soft error-SEU and SET,including the new mechanisms to induced SEUs,the advances of the MCUs and some newly observed phenomena of the SETs.The mechanisms and the trends with downscaling of these issues are briefly discussed.We also review the hardening strategies for different types of soft errors from different perspective and present the challenges in testing,modeling and hardening assurance of soft error issues we have to address in the future.展开更多
基金the Natural Science Foundation of Shanghai,China(No.15ZR1428400)Shanghai Engineering Research Center of High-Performance Medical Device Materials,China(No.20DZ2255500)the Project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development,Tohoku University,sponsored by Ministry,Education,Culture,Sports,Science and Technology,Japan,and the Grant-in Aid for Scientific Research(C)(No.20K05139)from JSPS(Japan Society for the Promotion of Science),Tokyo,Japan.
文摘Zr was added to Ti−Nb−Fe alloys to develop low elastic modulus and high strengthβ-Ti alloys for biomedical applications.Ingots of Ti−12Nb−2Fe−(2,4,6,8,10)Zr(at.%)were prepared by arc melting and then subjected to homogenization,cold rolling,and solution treatments.The phases and microstructures of the alloys were analyzed by optical microscopy,X-ray diffraction,and transmission electron microscopy.The mechanical properties were measured by tensile tests.The results indicate that Zr and Fe cause a remarkable solid-solution strengthening effect on the alloys;thus,all the alloys show yield and ultimate tensile strengths higher than 510 MPa and 730 MPa,respectively.Zr plays a weak role in the deformation mechanism.Further,twinning occurs in all the deformed alloys and is beneficial to both strength and plasticity.Ti−12Nb−2Fe−(8,10)Zr alloys with metastableβphases show low elastic modulus,high tensile strength,and good plasticity and are suitable candidate materials for biomedical implants.
文摘The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.
基金We would like to acknowledge the Sao Paulo Research Foundation(FAPESP)(Grant No.2014/15091-7 and 2016/10997-0)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPq)(Grant No.449009/2014-9)This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001.Danielle Cristina Camilo MAGALHÃES acknowledges CNPq for her PhD scholarship(Grant No.153181/2013-3).
文摘The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.
文摘Three characteristic points in the deformation history of a fractured tensile specimen are selected tocalculate two values of n( n1 and n2 ) to represent the hardening ability of material during the homogeneous plas-tic deformation and the following large plastic deformation. Experimental results obtained with mild streel andred copper show that n determined using the three-point method proposed is better to describe the hardening a-bility of material. It is therefore concluded that three-point method can be used to describe the hardening prop-erty of material during both homogeneous deformation and large plastic deformation.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB630801)
文摘A series of ferrite/bainite(F/B) multi-phase steels containing different volume fractions of ferrite were obtained.The effect of soft phase(ferrite) content on the work-hardening behavior of the steel was studied by the finite element simulation with V-BCC model and the modified Crussard-Jaoul(C-J) analysis.It is shown that the multi-phase steels have an excellent anti-deformation ability,such as higher stress ratio(R t1.5 /R t0.5),higher uniform elongation and lower yield to tensile strength ratio.For the F/B multi-phase steels,increasing the proportion of ferrite would help to increase the uniform elongation.However,introducing much more fraction of ferrite would not be helpful to improve the stress ratio of multi-phase steel.The ferrite plastic strain constrained by bainite would be beneficial to increasing the work hardening rate.The optimum proportion of ferrite will result both higher stress ratio and uniform elongation in multi-phase steel.
基金supported by the National Natural Science Foundation of China(Grant No.11175138)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100201110018)+1 种基金the Key Program of the National Natural Science Foundation of China(Grant No.11235008)the State Key Laboratory Program(Grant No.20140134)
文摘With the decrease of the device size,soft error induced by various particles becomes a serious problem for advanced CMOS technologies.In this paper,we review the evolution of two main aspects of soft error-SEU and SET,including the new mechanisms to induced SEUs,the advances of the MCUs and some newly observed phenomena of the SETs.The mechanisms and the trends with downscaling of these issues are briefly discussed.We also review the hardening strategies for different types of soft errors from different perspective and present the challenges in testing,modeling and hardening assurance of soft error issues we have to address in the future.