The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also chan...New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also changes of machining equipments,dispersals of processing locations,and also with unscheduled disruptions.This research is to develop an integrated process planning and scheduling system,which is suited to this open,dynamic,distributed manufacturing environment.Multi-agent system(MAS)approaches are used for integration of manufacturing processing planning and scheduling in an open distributed manufacturing environment,in which process planning can be adjusted dynamically and manufacturing resources can increase/decrease according to the requirements.One kind of multi-level dynamic negotiated approaches to process planning and scheduling is presented for the integration of manufacturing process planning and scheduling.展开更多
The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special...The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.展开更多
Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is prop...Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is proposed so that JSP-DCPT can be handled by solving a job-shop scheduling problem (JSP) and a series of discrete time-cost tradeoff problems. To simplify the decomposition approach, the time-cost phase plane is introduced to describe tradeoffs of the discrete time-cost tradeoff problem, and an extreme mode-based set dominant theory is elaborated so that an upper bound is determined to cut discrete time-cost tradeoff problems generated by using the proposed decomposition approach. An extreme mode-based set dominant decomposition algorithm (EMSDDA) is then proposed. Experimental simulations for instance JSPDCPT_FT10, which is designed based on a JSP benchmark FT10, demonstrate the effectiveness of the proposed theory and the decomposition approach.展开更多
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.
基金International Cooperative Research Project of China(No.2006DFA73180)
文摘New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also changes of machining equipments,dispersals of processing locations,and also with unscheduled disruptions.This research is to develop an integrated process planning and scheduling system,which is suited to this open,dynamic,distributed manufacturing environment.Multi-agent system(MAS)approaches are used for integration of manufacturing processing planning and scheduling in an open distributed manufacturing environment,in which process planning can be adjusted dynamically and manufacturing resources can increase/decrease according to the requirements.One kind of multi-level dynamic negotiated approaches to process planning and scheduling is presented for the integration of manufacturing process planning and scheduling.
基金Supported by National Information Industry Department (01XK310020)Shanghai Natural Science Foundation (No. 01ZF14004)
文摘The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075337, 50705076, 50705077)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China (Grant No. 2009JQ9002)
文摘Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is proposed so that JSP-DCPT can be handled by solving a job-shop scheduling problem (JSP) and a series of discrete time-cost tradeoff problems. To simplify the decomposition approach, the time-cost phase plane is introduced to describe tradeoffs of the discrete time-cost tradeoff problem, and an extreme mode-based set dominant theory is elaborated so that an upper bound is determined to cut discrete time-cost tradeoff problems generated by using the proposed decomposition approach. An extreme mode-based set dominant decomposition algorithm (EMSDDA) is then proposed. Experimental simulations for instance JSPDCPT_FT10, which is designed based on a JSP benchmark FT10, demonstrate the effectiveness of the proposed theory and the decomposition approach.