In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic senso...In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.展开更多
Because the difference between the acceleration curve of traditional projectile structure and the measured accelera- tion curve is large, refining projectile structure is proposed. After setting up multi-storey concre...Because the difference between the acceleration curve of traditional projectile structure and the measured accelera- tion curve is large, refining projectile structure is proposed. After setting up multi-storey concrete target board penetrated by the projectiles with different structures, the simulations with traditional projectile structure and refining projectile structure are conducted using ANSYS/LS-DYNA, and two acceleration curves are obtained, respectively. And then the target experi- ment that the projectile penetrates eight-storey concrete board is conducted and the measured acceleration curves are ob- tained. By comparing the simulation acceleration curves with the measured acceleration curves, it can be concluded that the acceleration curve with refined projectile structure is closer to the measured curve. Therefore, the simulation curve with re- fined projectile structure is of higher reference value for simulation research.展开更多
The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on...The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.展开更多
In order to solve the problem of parametric test of smart projectile launch,the launch environment of smart projectile was analyzed.a reasonable and feasible storage testing method was proposed,and a multi-channel tes...In order to solve the problem of parametric test of smart projectile launch,the launch environment of smart projectile was analyzed.a reasonable and feasible storage testing method was proposed,and a multi-channel test system suitable for the environment was designed.The system was successfully applied to a certain range test,and dynamic parameters such as triaxial acceleration of smart projectile launch environment were acquired.The test results play an important role in the improvements of smart projectile design process.展开更多
In order to realize a high accuracy seismic exploration in the high electro-magnetic field and to improve oil producibility and recovery efficiency,a three-component photoelastic waveguide accelerometer is designed. B...In order to realize a high accuracy seismic exploration in the high electro-magnetic field and to improve oil producibility and recovery efficiency,a three-component photoelastic waveguide accelerometer is designed. Based on the photoelastic effect,the Mach-Zehnder integrated optical interferometer is designed to measure the three-orthogonal components of acceleration and the combined three-component simple harmonic vibrator is designed to reduce the cross-talk among the acceleration components. According to the variation of LiNbO3 waveguide phase under the action of the applied acceleration,the cross-axise sensitivity and transverse sensitivity ratio(TSR) were analysed. The results reveal that the accelerometer has wide band and good linearity. It can satisfy the sensor requirements of high accuracy seismic exploration. The main design parameters of the geophone system are:phase sensitivity:1.86×10-4 Rad·m-1·s-2,natural frequency:3 500 Hz,and the transverse sensitivity ratio:0.11%.展开更多
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper...The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.展开更多
In this paper, we experimentally and theoretically study the resistance force that develops when a cylinder with a flat face colliding against dry quartzite sand. Observations from experimental data clearly show that ...In this paper, we experimentally and theoretically study the resistance force that develops when a cylinder with a flat face colliding against dry quartzite sand. Observations from experimental data clearly show that the acceleration curves are characterized by a double-peak structure. The first agitated peak can be attributed to a shock process where sand responds elastically, and the valley bottom in the double-peak structure is related to a limited plastic load when a fully plastic region is formed in the sand, while the second agitated peak corresponds to a the occurrence of the maximum of viscous force in a homogeneous developed bulk flow. We use slip line theory (SL) developed in plastic mechanics to capture the value at the valley bottom, adopt the double shearing theory (DS), together with a Local Rheological Constitutive Law (LRCL) suggested in this paper, to capture the drag force generated in a homogeneous bulk flow. Good agreements in the comparisons between numerical and experimental results support the characteristic resistance by the cylinder to predict granular states.展开更多
文摘In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.
基金Science and Technology Fund for Graduate Students of North University of China(NO.20131036)
文摘Because the difference between the acceleration curve of traditional projectile structure and the measured accelera- tion curve is large, refining projectile structure is proposed. After setting up multi-storey concrete target board penetrated by the projectiles with different structures, the simulations with traditional projectile structure and refining projectile structure are conducted using ANSYS/LS-DYNA, and two acceleration curves are obtained, respectively. And then the target experi- ment that the projectile penetrates eight-storey concrete board is conducted and the measured acceleration curves are ob- tained. By comparing the simulation acceleration curves with the measured acceleration curves, it can be concluded that the acceleration curve with refined projectile structure is closer to the measured curve. Therefore, the simulation curve with re- fined projectile structure is of higher reference value for simulation research.
基金the National Natural Science Foundation of China(No.12162010)the Science Technology Base and Talent Special Project of Guangxi,China(No.AD19245143)Natural Science Foundation of Guangxi,China(No.2021GXNSFAA220087).
文摘The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.
基金Fund of Equipment Pre-research From Key Laboratory(No.61420010402XXX)
文摘In order to solve the problem of parametric test of smart projectile launch,the launch environment of smart projectile was analyzed.a reasonable and feasible storage testing method was proposed,and a multi-channel test system suitable for the environment was designed.The system was successfully applied to a certain range test,and dynamic parameters such as triaxial acceleration of smart projectile launch environment were acquired.The test results play an important role in the improvements of smart projectile design process.
基金The National Natural Science Foundation of China(40774067)The Program of International Cooperation and Exchange in National Natural Science Foundation of China(40811240167)The Program of the Key Science and Technology of Sichuan(07JY029-135)
文摘In order to realize a high accuracy seismic exploration in the high electro-magnetic field and to improve oil producibility and recovery efficiency,a three-component photoelastic waveguide accelerometer is designed. Based on the photoelastic effect,the Mach-Zehnder integrated optical interferometer is designed to measure the three-orthogonal components of acceleration and the combined three-component simple harmonic vibrator is designed to reduce the cross-talk among the acceleration components. According to the variation of LiNbO3 waveguide phase under the action of the applied acceleration,the cross-axise sensitivity and transverse sensitivity ratio(TSR) were analysed. The results reveal that the accelerometer has wide band and good linearity. It can satisfy the sensor requirements of high accuracy seismic exploration. The main design parameters of the geophone system are:phase sensitivity:1.86×10-4 Rad·m-1·s-2,natural frequency:3 500 Hz,and the transverse sensitivity ratio:0.11%.
基金supported by the National Natural Science Foundation of China(Nos.51104128,51322401,51304201 and 51204159)Jiangsu Province Prospective industry-UniversityResearch Cooperation Research Program of China(No.BY2012085)+2 种基金Doctor Station Fund of China(No.20120095110013)333 Project Program of Jiangsu Province of China"Blue Project" Program of Jiangsu Province of China
文摘The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.
基金the National Natural Science Foundation ofChina (Grant No. 11132001)
文摘In this paper, we experimentally and theoretically study the resistance force that develops when a cylinder with a flat face colliding against dry quartzite sand. Observations from experimental data clearly show that the acceleration curves are characterized by a double-peak structure. The first agitated peak can be attributed to a shock process where sand responds elastically, and the valley bottom in the double-peak structure is related to a limited plastic load when a fully plastic region is formed in the sand, while the second agitated peak corresponds to a the occurrence of the maximum of viscous force in a homogeneous developed bulk flow. We use slip line theory (SL) developed in plastic mechanics to capture the value at the valley bottom, adopt the double shearing theory (DS), together with a Local Rheological Constitutive Law (LRCL) suggested in this paper, to capture the drag force generated in a homogeneous bulk flow. Good agreements in the comparisons between numerical and experimental results support the characteristic resistance by the cylinder to predict granular states.