期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
最小成本加快法中的优化组合方案定理及其计算机程序 被引量:1
1
作者 宁宣熙 余晓景 《航空学报》 EI CAS CSCD 北大核心 1992年第6期B298-B303,共6页
本文提出了最小成本加快法中寻找多关键路线情况下的组合压缩方案的方法,并用图论中有关割集的理论进行了论证,得到了优化组合方案定理。该定理指出:在由网络计划图中的关键路线构成的子图中,如果每项作业都允许压缩或放宽作业时间,则... 本文提出了最小成本加快法中寻找多关键路线情况下的组合压缩方案的方法,并用图论中有关割集的理论进行了论证,得到了优化组合方案定理。该定理指出:在由网络计划图中的关键路线构成的子图中,如果每项作业都允许压缩或放宽作业时间,则其最小费用率完全割集中的每个正向割弧(作业)压缩单位时间,每个反向割弧(作业)放宽单位时间,则总工期以最低成本压缩单位时间。文中详细介绍了这种算法。 展开更多
关键词 最小成本 加快法 网络计算
下载PDF
Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems 被引量:2
2
作者 LI ShanDe GAO GuiBing +2 位作者 HUANG QiBai LIU WeiQi CHEN Jun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1405-1410,共6页
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements... We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems. 展开更多
关键词 fast multipole method boundary element method Helmholtz equation acoustic scattering problems.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部