期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
分数阶玻色-爱因斯坦凝聚态的数值方法
1
作者 邵永运 韩子健 +1 位作者 张荣培 王语 《沈阳师范大学学报(自然科学版)》 CAS 2018年第5期417-423,共7页
针对分数阶玻色-爱因斯坦凝聚态(BEC)的基态和第一激发态进行了研究。首先使用归一化梯度流的方法将分数阶玻色-爱因斯坦凝聚态的基态问题转化为求解分数阶Gross-Pitaevskii方程的最小能量问题。由于分数阶拉普拉斯算子的非局部性质,计... 针对分数阶玻色-爱因斯坦凝聚态(BEC)的基态和第一激发态进行了研究。首先使用归一化梯度流的方法将分数阶玻色-爱因斯坦凝聚态的基态问题转化为求解分数阶Gross-Pitaevskii方程的最小能量问题。由于分数阶拉普拉斯算子的非局部性质,计算分数阶GP方程的特征值和特征函数是一个挑战。传统的Grünwald-Letnikov差分法精度低、稳定性差。利用加权偏移的Grünwald-Letnikov差分法(WSGD)进行空间离散,离散结果为一个常微分方程组,具有二阶精度并且无条件稳定。时间离散方面采用了隐式积分因子(IIF)方法,计算精度高、存储量小、效率高。最后,数值实验通过调节分数阶阶数α和非线性参量β来演示包含谐振子势的BEC的基态和第一激发态。数值结果表明了2种数值方法的收敛性、高效性和准确性。 展开更多
关键词 玻色-爱因斯坦凝聚态 归一化梯度流 分数阶gross-Pitaevskii方程 加权偏移grünwald-letnikov差分法 隐式积分因子方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部