期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
分数阶玻色-爱因斯坦凝聚态的数值方法
1
作者
邵永运
韩子健
+1 位作者
张荣培
王语
《沈阳师范大学学报(自然科学版)》
CAS
2018年第5期417-423,共7页
针对分数阶玻色-爱因斯坦凝聚态(BEC)的基态和第一激发态进行了研究。首先使用归一化梯度流的方法将分数阶玻色-爱因斯坦凝聚态的基态问题转化为求解分数阶Gross-Pitaevskii方程的最小能量问题。由于分数阶拉普拉斯算子的非局部性质,计...
针对分数阶玻色-爱因斯坦凝聚态(BEC)的基态和第一激发态进行了研究。首先使用归一化梯度流的方法将分数阶玻色-爱因斯坦凝聚态的基态问题转化为求解分数阶Gross-Pitaevskii方程的最小能量问题。由于分数阶拉普拉斯算子的非局部性质,计算分数阶GP方程的特征值和特征函数是一个挑战。传统的Grünwald-Letnikov差分法精度低、稳定性差。利用加权偏移的Grünwald-Letnikov差分法(WSGD)进行空间离散,离散结果为一个常微分方程组,具有二阶精度并且无条件稳定。时间离散方面采用了隐式积分因子(IIF)方法,计算精度高、存储量小、效率高。最后,数值实验通过调节分数阶阶数α和非线性参量β来演示包含谐振子势的BEC的基态和第一激发态。数值结果表明了2种数值方法的收敛性、高效性和准确性。
展开更多
关键词
玻色-爱因斯坦凝聚态
归一化梯度流
分数阶
gr
oss-Pitaevskii方程
加权偏移grünwald-letnikov差分法
隐式积分因子方法
下载PDF
职称材料
题名
分数阶玻色-爱因斯坦凝聚态的数值方法
1
作者
邵永运
韩子健
张荣培
王语
机构
沈阳师范大学学科与科研工作处
沈阳师范大学数学与系统科学学院
出处
《沈阳师范大学学报(自然科学版)》
CAS
2018年第5期417-423,共7页
基金
辽宁省科技厅自然科学基金资助项目(2014020121)
文摘
针对分数阶玻色-爱因斯坦凝聚态(BEC)的基态和第一激发态进行了研究。首先使用归一化梯度流的方法将分数阶玻色-爱因斯坦凝聚态的基态问题转化为求解分数阶Gross-Pitaevskii方程的最小能量问题。由于分数阶拉普拉斯算子的非局部性质,计算分数阶GP方程的特征值和特征函数是一个挑战。传统的Grünwald-Letnikov差分法精度低、稳定性差。利用加权偏移的Grünwald-Letnikov差分法(WSGD)进行空间离散,离散结果为一个常微分方程组,具有二阶精度并且无条件稳定。时间离散方面采用了隐式积分因子(IIF)方法,计算精度高、存储量小、效率高。最后,数值实验通过调节分数阶阶数α和非线性参量β来演示包含谐振子势的BEC的基态和第一激发态。数值结果表明了2种数值方法的收敛性、高效性和准确性。
关键词
玻色-爱因斯坦凝聚态
归一化梯度流
分数阶
gr
oss-Pitaevskii方程
加权偏移grünwald-letnikov差分法
隐式积分因子方法
Keywords
Bose-Einstein condensation
normalized
gr
adient flow
fractional
gr
oss-Pitaevskii equation
weighted and shifted
gr
ünwald-letnikov
implicit inte
gr
ation factor method
分类号
O241.82 [理学—计算数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
分数阶玻色-爱因斯坦凝聚态的数值方法
邵永运
韩子健
张荣培
王语
《沈阳师范大学学报(自然科学版)》
CAS
2018
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部