针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立...针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。展开更多
提出的访存时间最优Cache划分(OMTP,optimal memory time Cache partitioning)方法通过特征获取部件来获取不同应用程序的平均失效开销和Cache命中的路分布情况,以此作为划分依据来给竞争程序分配合适的Cache空间,达到优化程序整体执行...提出的访存时间最优Cache划分(OMTP,optimal memory time Cache partitioning)方法通过特征获取部件来获取不同应用程序的平均失效开销和Cache命中的路分布情况,以此作为划分依据来给竞争程序分配合适的Cache空间,达到优化程序整体执行性能的目的。实验结果表明,OMTP方法相比基于利用率的Cache划分(UCP)方法吞吐率平均提高3.1%,加权加速比平均提高1.3%,整体性能更优。展开更多
LRU替换算法在单核处理器中得到了广泛应用,而多核环境大都采用多核共享最后一级Cache(LLC)的策略,随着LLC容量和相联度的增加以及多核应用的工作集增大,LRU替换算法和理论最优替换算法之间的差距越来越大。该文提出了一种平均划分下基...LRU替换算法在单核处理器中得到了广泛应用,而多核环境大都采用多核共享最后一级Cache(LLC)的策略,随着LLC容量和相联度的增加以及多核应用的工作集增大,LRU替换算法和理论最优替换算法之间的差距越来越大。该文提出了一种平均划分下基于频率的多核共享Cache替换算法(ALRU-F)。该算法将当前所需要的部分工作集保留在Cache内,逐出无用块,同时还提出了块粒度动态划分下基于频率的替换算法(BLRU-F)。该文提出的ALRU-F算法相比传统的LRU算法缺失率降低了26.59%,CPU每一时钟周期内所执行的指令数IPC(Instruction Per Clock)则提升了13.59%。在此基础上提出的块粒度动态划分下,基于频率的BLUR-F算法相比较传统的LRU算法性能提高更大,缺失率降低了33.72%,而IPC则提升了16.59%。提出的两种算法在性能提升的同时,并没有明显地增加能耗。展开更多
文摘针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。
文摘提出的访存时间最优Cache划分(OMTP,optimal memory time Cache partitioning)方法通过特征获取部件来获取不同应用程序的平均失效开销和Cache命中的路分布情况,以此作为划分依据来给竞争程序分配合适的Cache空间,达到优化程序整体执行性能的目的。实验结果表明,OMTP方法相比基于利用率的Cache划分(UCP)方法吞吐率平均提高3.1%,加权加速比平均提高1.3%,整体性能更优。
文摘LRU替换算法在单核处理器中得到了广泛应用,而多核环境大都采用多核共享最后一级Cache(LLC)的策略,随着LLC容量和相联度的增加以及多核应用的工作集增大,LRU替换算法和理论最优替换算法之间的差距越来越大。该文提出了一种平均划分下基于频率的多核共享Cache替换算法(ALRU-F)。该算法将当前所需要的部分工作集保留在Cache内,逐出无用块,同时还提出了块粒度动态划分下基于频率的替换算法(BLRU-F)。该文提出的ALRU-F算法相比传统的LRU算法缺失率降低了26.59%,CPU每一时钟周期内所执行的指令数IPC(Instruction Per Clock)则提升了13.59%。在此基础上提出的块粒度动态划分下,基于频率的BLUR-F算法相比较传统的LRU算法性能提高更大,缺失率降低了33.72%,而IPC则提升了16.59%。提出的两种算法在性能提升的同时,并没有明显地增加能耗。