为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂...为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上.展开更多
The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are...The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.展开更多
文摘为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上.
文摘The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.