期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
考虑交通事件影响的高速公路短时行程时间预测
1
作者 潘杰 石京 《交通工程》 2024年第8期45-53,74,共10页
本研究目的是基于历史行程数据并考虑交通事件,构建可提高高速公路短时行程时间预测精度的方法。基于深层机器学习理论,设计加权均方根相似(Weighted-RMSS)模型,利用经纬度将行程分段,考虑高速公路车辆时空流动性的时间传递,计算当前行... 本研究目的是基于历史行程数据并考虑交通事件,构建可提高高速公路短时行程时间预测精度的方法。基于深层机器学习理论,设计加权均方根相似(Weighted-RMSS)模型,利用经纬度将行程分段,考虑高速公路车辆时空流动性的时间传递,计算当前行程时间和历史案例行程时间的相似性,提高了行程时间预测精确度。在此基础上,结合交通事件数据建立交通事件影响矩阵,建立LGBM模型(Light Gradient Boosting Machine)用于短时行程时间预测,并利用广州高速公路平沙至机场南路段实测数据进行验证。研究结果表明,开发2个模型效果均优于传统KNN模型,且考虑了交通事件影响的LGBM模型的预测精度高于Weighted-RMSS模型,达到95.68%,比较不同未来预测时间得出预测5 min效果最佳,精度可达96.18%。本研究在短时行程时间预测上有显著的优越性,有助于为驾驶人提供准确的出行时间,有利于高速公路的交通管理。 展开更多
关键词 高速公路 行程时间预测 时空流动性 加权均方根相似模型 交通事件影响 LGBM模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部