云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键...云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键部分,当参与服务的RRH越多时,用户的通信速率更大且体验更好,但同时所带来的能源损耗越大,因此本文研究通信速率和功率消耗二者之间的权衡关系。提出一种优化算法,将权衡问题建模成一个单目标优化模型,通过权衡系数来协调速率和RRH激活个数之间的矛盾。为了解决l0-范数的非凸问题,本文使用重复加权l1-范数去近似l0-范数,同时使用加权最小均方误差(weighted minimum mean square error,WMMSE)的方法将通信速率从非凸问题转换成一个凸问题,最后使用改进的次梯度法对预编码矩阵进行更新。仿真结果证明该算法减少了时间复杂度,同时达到了与穷举法相近的性能。展开更多
文摘云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键部分,当参与服务的RRH越多时,用户的通信速率更大且体验更好,但同时所带来的能源损耗越大,因此本文研究通信速率和功率消耗二者之间的权衡关系。提出一种优化算法,将权衡问题建模成一个单目标优化模型,通过权衡系数来协调速率和RRH激活个数之间的矛盾。为了解决l0-范数的非凸问题,本文使用重复加权l1-范数去近似l0-范数,同时使用加权最小均方误差(weighted minimum mean square error,WMMSE)的方法将通信速率从非凸问题转换成一个凸问题,最后使用改进的次梯度法对预编码矩阵进行更新。仿真结果证明该算法减少了时间复杂度,同时达到了与穷举法相近的性能。