期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于区间适应值交互式遗传算法的加权多输出高斯过程代理模型 被引量:24
1
作者 孙晓燕 陈姗姗 +1 位作者 巩敦卫 张勇 《自动化学报》 EI CSCD 北大核心 2014年第2期172-184,共13页
融合了用户认知和智能评价的交互式遗传算法(Interactive genetic algorithm,IGA)是解决一类定性性能指标优化问题的有效方法,但是,评价不确定性和易疲劳性极大地限制了该算法解决实际问题的能力.基于用户已评价信息,采用合适的机器学... 融合了用户认知和智能评价的交互式遗传算法(Interactive genetic algorithm,IGA)是解决一类定性性能指标优化问题的有效方法,但是,评价不确定性和易疲劳性极大地限制了该算法解决实际问题的能力.基于用户已评价信息,采用合适的机器学习方法,构建用户认知代理模型是解决上述问题的常用方法之一.但是,现有研究成果均没有考虑用户评价不确定性对学习样本、代理模型的影响,以及模型拟合不确定性对基于适应值的进化操作有效性的影响.针对上述问题,本文提出基于加权多输出高斯过程(Gaussian process,GP)代理模型的交互式遗传算法.首先,在区间适应值评价模式下,提取学习样本的噪声特性,以确定相应学习样本对代理模型的影响度权重系数,构建两输出高斯过程代理模型;然后,利用代理模型提供的预测值及预测置信水平,给出一种新的个体适应值估计方法和个体选择方法;基于模型预测信息,实现模型更新管理.将所提算法分别应用于含噪函数和服装设计问题中,所得结果表明本文算法可更好地拟合和跟踪用户认知,减小对进化搜索的误导,更快找到用户满意解. 展开更多
关键词 遗传算法 交互 代理模型 高斯过程 加权多输出
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部