针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进...针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。展开更多
Mean shift算法是一种重要的目标跟踪方法。本文在充分研究Mean shift算法的基础上,发现传统的跟踪算法缺乏描述目标的信息,且易受到光照变化等因素的影响,可能直接导致目标跟踪的失败或者带来较大的误差。本文首先计算目标图像区域中...Mean shift算法是一种重要的目标跟踪方法。本文在充分研究Mean shift算法的基础上,发现传统的跟踪算法缺乏描述目标的信息,且易受到光照变化等因素的影响,可能直接导致目标跟踪的失败或者带来较大的误差。本文首先计算目标图像区域中基于局部二值模式(LBP)的纹理特征模型,然后在建模目标模型和候选目标模型时采用一种加权背景直方图的方法。该方法能充分考虑目标附近的背景干扰以及背景信息,能有效降低背景和目标位置的相关性。实验表明,改进的方法能有效提高目标的跟踪精度。展开更多
文摘针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。