期刊文献+
共找到5,047篇文章
< 1 2 250 >
每页显示 20 50 100
鲁棒加权最小二乘支持向量回归的进气量预测 被引量:3
1
作者 杨济东 南新元 查琴 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第2期189-196,共8页
生物氧化提金过程中,进气量是决定提金率和生产成本的重要参数.针对进气量受众多因素影响且具有一定随机性的问题,提出了一种基于鲁棒加权最小二乘支持向量回归的进气量预测模型.通过分析得知进气量的局部波动数据与氧化槽的氧化还原电... 生物氧化提金过程中,进气量是决定提金率和生产成本的重要参数.针对进气量受众多因素影响且具有一定随机性的问题,提出了一种基于鲁棒加权最小二乘支持向量回归的进气量预测模型.通过分析得知进气量的局部波动数据与氧化槽的氧化还原电位之间存在较大的相关性,考虑实际现场情况,根据相关性程度赋予数据不同权重,将两组特定权重的交集应用于加权最小二乘支持向量回归算法,建立了鲁棒加权最小二乘支持向量回归进气量预测模型.仿真结果表明,所建模型可行有效. 展开更多
关键词 进气量预测 最小乘支持向量 鲁棒性 加权系数 混合权重
下载PDF
基于模糊加权最小二乘支持向量回归的非线性系统建模方法 被引量:1
2
作者 熊中刚 刘忠 罗素莲 《探测与控制学报》 CSCD 北大核心 2019年第5期111-117,共7页
针对非线性系统建模时边界数据会产生较大的建模偏差、数据计算负荷大以及如何从数据集中选取K个近邻点才能保证其性能缺乏统一标准等问题,提出了基于模糊加权最小二乘支持向量回归的非线性系统建模方法。该方法融合了模糊加权机理与最... 针对非线性系统建模时边界数据会产生较大的建模偏差、数据计算负荷大以及如何从数据集中选取K个近邻点才能保证其性能缺乏统一标准等问题,提出了基于模糊加权最小二乘支持向量回归的非线性系统建模方法。该方法融合了模糊加权机理与最小二乘支持向量回归的优点,通过引入重叠因子,在保证建模精度(均方根误差越小越好)的情况下,去除建模过程中的一些非重要数据,减小建模方法的运算时间,并能将全局与局部建模方法相融合有效解决局部建模方法所产生的边界效应问题。实验验证结果表明,分别对几种方法从训练/测试均方根误差、不同重叠因子、计算时间方面比较都有明显的有效性和优越性。 展开更多
关键词 模糊加权机理 最小乘支持向量回归 非线性统 建模方法
下载PDF
基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报
3
作者 张晗 张淑宁 +1 位作者 刘珂 邓冠龙 《化工学报》 EI CSCD 北大核心 2024年第6期2313-2321,共9页
草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向... 草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向量回归(least square support vector regression,LSSVR)的草酸钴粒度预报模型对草酸钴合成过程质量指标实现在线测量。在该方法中,首先,SFA方法可以有效地捕获过程的慢特征向量,解决慢时变问题;然后,利用LSSVR方法建立慢特征与粒度之间的非线性关系模型,进而实现质量指标在线预报。最后,应用非线性的数值案例以及草酸钴合成过程数据,验证该方法的有效性。实验结果显示:相较于单一的径向基函数神经网络(radial basis function neural network,RBFNN)、LSSVR预测模型以及SFA与NN相结合的预报模型,所提方法在数值案例中的预测精度分别提升了13.31%、2.26%、1.72%;在草酸钴合成过程中的预测精度分别提升了13.27%、9.96%、8.92%。 展开更多
关键词 草酸钴合成过程 软测量 慢特征分析 最小乘支持向量回归 化学过程 预测 神经网络
下载PDF
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模
4
作者 王建成 李强亚 +2 位作者 刘涛 谭永红 阎帅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1692-1697,共6页
针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞... 针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞模型,设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化.最后,将所提出方法用于实际预测一个压电执行器的位移.结果表明,该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法,能得到更加准确的结果. 展开更多
关键词 压电执行器 磁滞效应 磁滞算子 最小乘支持向量 可保证收敛粒子群算法 梯度提升
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
5
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
下载PDF
自适应加权最小二乘支持向量机回归及应用 被引量:5
6
作者 崔文同 林文才 颜学峰 《石油化工高等学校学报》 CAS 2009年第4期84-88,共5页
针对软测量建模样本中数据难以避免存在粗差、以及粗差数据对模型性能的影响,提出了一种自适应加权最小二乘支持向量机(AWLS-SVM)回归建模方法。AWLS-SVM基于建模样本数据,根据最小二乘支持向量机回归模型的拟合残差确定各样本的残差权... 针对软测量建模样本中数据难以避免存在粗差、以及粗差数据对模型性能的影响,提出了一种自适应加权最小二乘支持向量机(AWLS-SVM)回归建模方法。AWLS-SVM基于建模样本数据,根据最小二乘支持向量机回归模型的拟合残差确定各样本的残差权值,根据样本的空间分布确定杠杆权值,进而通过迭代运算,自适应确定各建模样本的权值,在有效减小粗差点对模型性能影响的同时,保留了其所提供的有效信息。仿真实验表明,AWLS-SVM能有效克服粗差样本数据的影响,其模型的预测性能明显优于LS-SVM和径向基函数网络。最后,应用AWLS-SVM建立粗对苯二甲酸中4-CBA含量软测量模型,获得满意结果。 展开更多
关键词 粗差 加权 最小乘支持向量 软测量
下载PDF
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
7
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
8
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算法 遗传算法
下载PDF
基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型 被引量:39
9
作者 刘双印 徐龙琴 +1 位作者 李道亮 曾利华 《农业工程学报》 EI CAS CSCD 北大核心 2012年第23期167-175,共9页
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用... 养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。 展开更多
关键词 模型 优化 算法 溶解氧预测 最小乘支持向量回归 河蟹养殖
下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
10
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
下载PDF
基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型 被引量:24
11
作者 李波 顾冲时 +1 位作者 李智录 张真真 《水利学报》 EI CSCD 北大核心 2008年第12期1390-1394,1400,共6页
利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分... 利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分析表明,PLS-LSSVM模型的拟合与预测精度均优于独立使用PLS或LSSVM建模的精度;PLS-LSSVM模型的学习训练效率比LSSVM模型有较大的优势,更适合于大规模的数据建模。 展开更多
关键词 大坝渗流 最小二乘回归 最小乘支持向量 监控模型
下载PDF
基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测 被引量:17
12
作者 徐志明 文孝强 +1 位作者 孙媛媛 孙灵芳 《中国电机工程学报》 EI CSCD 北大核心 2009年第17期8-13,共6页
对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程... 对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程度作为输出,建立最小二乘支持向量回归机燃煤锅炉结渣预测模型。同时采用显微镜原理对惩罚参数γ和核参数σ进行寻优,快速有效地获得二者的最优组合。通过对5台锅炉结渣特性进行预测评判,结果表明此方法是合理可行的。同时依据本方法及面向对象的高级语言,开发了相应的预测评判系统。 展开更多
关键词 最小乘支持向量回归 燃煤锅炉 动态指标 结渣 评判
下载PDF
一种基于密度加权的最小二乘支持向量机稀疏化算法 被引量:10
13
作者 司刚全 曹晖 +1 位作者 张彦斌 贾立新 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期11-15,共5页
针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同... 针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同时对支持向量样本邻域内的其他样本密度信息进行削减,从而避免相似样本被选中为支持向量;再选择剩余样本中具有最大可能贡献度的样本添加到支持向量集中,直到模型性能满足要求.仿真和实际应用表明,与Suykens提出的标准稀疏化算法相比,所提出的算法能有效剔除冗余支持向量,具有更好的稀疏性和鲁棒性. 展开更多
关键词 最小乘支持向量 密度加权 稀疏化 磨机负荷
下载PDF
基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真 被引量:55
14
作者 阎威武 常俊林 邵惠鹤 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第4期524-526,532,共4页
提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚... 提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚动时间窗的LSSVM回归估计方法应用于软测量建模,进行轻柴油凝固点的预估.结果表明,该建模方法十分有效. 展开更多
关键词 最小乘支持向量 软测量 滚动时间窗 建模
下载PDF
基于加权最小二乘支持向量机的温室小气候建模与仿真 被引量:7
15
作者 李晋 秦琳琳 +2 位作者 吴刚 苑媛 岳大志 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第16期4232-4236,共5页
分析了温室小气候系统结构,采用加权最小二乘支持向量机回归方法在线建立温室小气候模型,并进行仿真研究,取得了较好的效果。最小二乘支持向量机中引入加权因子,使其回归估计对非高斯分布噪声及野点数据具有较好的鲁棒性。最后将此方法... 分析了温室小气候系统结构,采用加权最小二乘支持向量机回归方法在线建立温室小气候模型,并进行仿真研究,取得了较好的效果。最小二乘支持向量机中引入加权因子,使其回归估计对非高斯分布噪声及野点数据具有较好的鲁棒性。最后将此方法和带有智能监督级的渐消记忆递推增广最小二乘方法的在线建模及仿真结果进行了对比分析。 展开更多
关键词 温室 小气候 系统建模 支持向量 加权最小二乘
下载PDF
最小二乘支持向量回归滤波系统性能分析 被引量:6
16
作者 邓小英 杨顶辉 +2 位作者 刘涛 李月 杨宝俊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第8期2004-2011,共8页
支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例... 支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例,探讨了不同参数对最小二乘支持向量回归(Least Squares Support VectorRegression:LS-SVR)滤波器频率响应特性的影响,这些参数的不同选择相应地控制着滤波器通带上升沿的陡峭性、通带的中心频率、通带带宽以及信号能量的衰减,即滤波器长度越长通带的上升沿越陡,核参数值越大通带的中心频率越高,且通带带宽越宽,正则化参数值越小,通带带宽越窄(但通带中心频率基本保持恒定),有效信号幅度衰减越严重.合成地震记录的仿真实验结果表明,Ricker子波核LS-SVR滤波器在处理地震勘探信号的应用中,滤波性能优于径向基函数(Radial Basic Function:RBF)核LS-SVR滤波器以及小波变换滤波和Wiener滤波方法. 展开更多
关键词 支持向量 Ricker子波核 最小乘支持向量回归滤波系统 频率响应 随机噪声
下载PDF
最小二乘回归支持向量机对非线性时间序列预测的试验分析 被引量:16
17
作者 纪玲玲 林振山 +1 位作者 王昌雨 张志华 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第1期92-97,共6页
利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温... 利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温距平指数(长序列)资料进行了预测试验,以验证支持向量机对气候变化中非线性时间序列的预测效果。结果表明:通过训练建立的最小二乘回归支持向量机模型,较好地反映了Nino3区海温距平指数的变化规律,36个月的预报效果较好,具有一定的可信度。资料的长度越长,预测结果与实测值的变化趋势越接近,但资料长度对均方根预报误差不敏感。 展开更多
关键词 最小二乘回归支持向量 海温距平指数 时间序列预测
下载PDF
基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测 被引量:9
18
作者 佴磊 彭文 +1 位作者 袁明哲 周能娟 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2011年第3期799-804,共6页
根据采空区路面塌陷数据的特性,提出了基于经验模态分解(EMD)和加权最小二乘支持向量机(WLS-SVM)预测采空区地面塌陷的新方法,并将其应用于吉林省长平高速公路因刘房子煤矿开采而引起的塌陷预测中。对实测的塌陷数据首先利用三次样条插... 根据采空区路面塌陷数据的特性,提出了基于经验模态分解(EMD)和加权最小二乘支持向量机(WLS-SVM)预测采空区地面塌陷的新方法,并将其应用于吉林省长平高速公路因刘房子煤矿开采而引起的塌陷预测中。对实测的塌陷数据首先利用三次样条插值得到平滑的信号曲线,然后用EMD对插值后的信号进行时空滤波降噪处理,得到反映塌陷趋势的剩余分量,最后将其馈入到WLS-SVM模型完成预测。预测给出了采空区塌陷的中长期预测结果,得到塌陷区的最终塌陷值为174.34 cm,预测结果与实际监测数据平均偏差约1.06%。对长平高速公路下伏采空区段的实测数据进行分析,并与最小二乘支持向量机(LS-SVM)和BP神经网络预测结果进行了对比。结果表明:基于EMD和WLS-SRM的采空区地面塌陷预测方法具有更高的预测精度和广泛的适用性。 展开更多
关键词 三次样条插值 经验模态分解 加权最小乘支持向量 采空区 塌陷
下载PDF
基于自适应双向加权最小二乘支持向量机的超短期负荷预测 被引量:27
19
作者 王岗 姜杰 +1 位作者 唐昆明 张太勤 《电力系统保护与控制》 EI CSCD 北大核心 2010年第19期142-146,共5页
应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快... 应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快速留一法在线优化模型的参数,实现了相关参数的自适应选择,克服了应用固定系数进行预测的缺点。应用某地区的负荷数据进行了仿真预测,并应用不同的方法进行了对比。结果表明,所提出的方法与传统方法相比提高了超短期负荷的预测精度。 展开更多
关键词 最小乘支持向量 双向加权 快速留一法 超短期负荷预测 自适应参数选择
下载PDF
板形模式识别的多输出最小二乘支持向量回归机新方法 被引量:6
20
作者 张秀玲 张少宇 +1 位作者 赵文保 徐腾 《中国机械工程》 EI CAS CSCD 北大核心 2013年第2期258-263,共6页
为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提... 为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提出了一种基于MLSSVR的板形模式识别新方法,将该方法与LS-SVR合成识别方法进行对比实验,并对MLSSVR识别模型的识别能力进行了测试和分析,结果证明了MLSSVR算法的有效性。MLSSVR板形模式识别方法不仅避免了LS-SVR合成方法的复杂组合运算,具有更高的识别速度,而且具有更高精度和很强的泛化能力。 展开更多
关键词 最小乘支持向量回归 多输出最小乘支持向量回归 板形 模式识别
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部