期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的帕金森患者声纹识别 被引量:2
1
作者 张颖 徐志京 《计算机工程与设计》 北大核心 2019年第7期2039-2045,共7页
90%的帕金森病(PD)患者存在声带紊乱,提出一种利用WMFCC提取患者的声纹特征、DNN识别并分类的方法用于区分PD患者和健康人。通过计算患者声纹中倒谱系数的加权和系数,解决高阶倒谱系数小、特征分量对音频的表征能力差等问题。DNN训练并... 90%的帕金森病(PD)患者存在声带紊乱,提出一种利用WMFCC提取患者的声纹特征、DNN识别并分类的方法用于区分PD患者和健康人。通过计算患者声纹中倒谱系数的加权和系数,解决高阶倒谱系数小、特征分量对音频的表征能力差等问题。DNN训练并分类识别有效地提高系统精度,使用MBGD优化算法降低损失函数的计算量,提高系统训练速度。针对PD database中样本测试分类,结果相较传统SVM等方法,该方法提高了判别PD准确率,可达87.5%,为PD患者早期快速辅助诊断提供了良好的解决方案。 展开更多
关键词 帕金森病 加权梅尔倒谱系数 深度神经网络 声纹特征 小批量梯度下降优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部