针对当前较多图像修复算法主要通过对图像块进行方差和度量的方法来完成图像修复,忽略了图像块的显著边缘特性,使得修复图像容易出现模糊效应以及不连续效应等不良现象,导致算法修复性能不佳的不足,提出了基于曲率约束因子耦合边缘加权...针对当前较多图像修复算法主要通过对图像块进行方差和度量的方法来完成图像修复,忽略了图像块的显著边缘特性,使得修复图像容易出现模糊效应以及不连续效应等不良现象,导致算法修复性能不佳的不足,提出了基于曲率约束因子耦合边缘加权法则的图像修复算法.首先,通过像素点的等照度线方向构造曲率约束因子,对数据项进行约束,形成优先级度量函数,利用优先级度量函数选取优先修补块;然后,利用像素点的均值之差构造像素自相关模型,对样本块的大小进行了调整;最后,以样本块显著边缘为约束,构造了边缘加权模型,通过边缘加权模型联合SSD(sum of squared differences)模型建立了边缘加权法则,对最优匹配块进行搜索,用于对待修补块进行修复.仿真实验结果表明,与当前图像修复算法相比,本文设计的图像修复算法修复的图像具有良好的视觉效果.展开更多
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b...We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.展开更多
文摘针对当前较多图像修复算法主要通过对图像块进行方差和度量的方法来完成图像修复,忽略了图像块的显著边缘特性,使得修复图像容易出现模糊效应以及不连续效应等不良现象,导致算法修复性能不佳的不足,提出了基于曲率约束因子耦合边缘加权法则的图像修复算法.首先,通过像素点的等照度线方向构造曲率约束因子,对数据项进行约束,形成优先级度量函数,利用优先级度量函数选取优先修补块;然后,利用像素点的均值之差构造像素自相关模型,对样本块的大小进行了调整;最后,以样本块显著边缘为约束,构造了边缘加权模型,通过边缘加权模型联合SSD(sum of squared differences)模型建立了边缘加权法则,对最优匹配块进行搜索,用于对待修补块进行修复.仿真实验结果表明,与当前图像修复算法相比,本文设计的图像修复算法修复的图像具有良好的视觉效果.
基金supported by National major special equipment development(No.2011YQ120045)The National Natural Science Fund(No.41074050 and 41304023)
文摘We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.