期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于WCF-tree加权滑动窗口数据流元项集挖掘 被引量:1
1
作者 任永功 李雪兰 《计算机应用与软件》 CSCD 北大核心 2012年第10期75-78,共4页
数据流挖掘是当今数据挖掘领域内热点研究问题。通常频繁项集的数据量大,影响挖掘结果的理解与应用,提出一种基于WCF-tree加权滑动窗口数据流元项集挖掘算法(TWEM算法)。首先,考虑到数据在不同时间窗口内的重要性,允许用户定义窗口个数... 数据流挖掘是当今数据挖掘领域内热点研究问题。通常频繁项集的数据量大,影响挖掘结果的理解与应用,提出一种基于WCF-tree加权滑动窗口数据流元项集挖掘算法(TWEM算法)。首先,考虑到数据在不同时间窗口内的重要性,允许用户定义窗口个数和各窗口权值;其次,利用WCF-tree挖掘闭项集;最后,结合各等价类内项集与相应元项集支持度不完全相同,保持一种可估算的关系的特性,挖掘元项集。实验结果表明,TWEM算法缩小了搜索空间,提高了程序的运行效率。 展开更多
关键词 闭项集 加权滑动窗口 数据流 数据挖掘 元项集
下载PDF
数据流上加权共享滑动窗口的连接查询处理算法 被引量:2
2
作者 潘立强 李建中 王伟平 《计算机工程与应用》 CSCD 北大核心 2005年第27期160-163,共4页
在数据流应用中,系统经常需要处理大量的滑动窗口连续查询,采用共享滑动窗口技术可以有效节省存储空间,提高系统整体的查询处理能力。但是共享滑动窗口技术会增大单个查询的响应延迟,降低单个查询的服务质量。针对这个问题,论文提出了... 在数据流应用中,系统经常需要处理大量的滑动窗口连续查询,采用共享滑动窗口技术可以有效节省存储空间,提高系统整体的查询处理能力。但是共享滑动窗口技术会增大单个查询的响应延迟,降低单个查询的服务质量。针对这个问题,论文提出了加权共享滑动窗口的概念,并提出了三种优化的连接执行算法,优先响应重要的滑动窗口查询,从而提高了系统整体的服务质量。理论分析和实验结果表明论文提出的方法是行之有效的。 展开更多
关键词 数据流 加权滑动窗口 连接
下载PDF
对数据流频繁项集挖掘算法WSW-Imp的改进 被引量:1
3
作者 王晓霞 王治和 《计算机工程与应用》 CSCD 2013年第8期110-113,132,共5页
近年来随着新的应用的出现,比如网络流量分析、在线事物分析和网络欺诈检测等,对数据流的挖掘成了一个越来越重要的课题。对于数据流频繁项集的挖掘,目前绝大部分的研究都集中在传统的窗口模式下进行,即时间衰退窗口模式、界标窗口模式... 近年来随着新的应用的出现,比如网络流量分析、在线事物分析和网络欺诈检测等,对数据流的挖掘成了一个越来越重要的课题。对于数据流频繁项集的挖掘,目前绝大部分的研究都集中在传统的窗口模式下进行,即时间衰退窗口模式、界标窗口模式和滑动窗口模式。Pauray S.M.Tsai于2009年提出了一种新的窗口模式:加权滑动窗口模式,并设计了两个基于此窗口模式的数据流频繁项集挖掘算法WSW和WSW-Imp,其中WSW-Imp是对WSW算法的改进。在研究了加权滑动窗口模式以及WSW-Imp算法的基础上,对WSW-Imp算法作了进一步的改进,设计了算法WSW-Imp2,并从理论上证明了WSW-Imp2算法比WSW-Imp算法更高效,实验结果也表明了这一点。 展开更多
关键词 数据挖掘 数据流 数据流挖掘 频繁项集 加权滑动窗口模式
下载PDF
SWFP-Miner: an efficient algorithm for mining weighted frequent pattern over data streams
4
作者 Wang Jie Zeng Yu 《High Technology Letters》 EI CAS 2012年第3期289-294,共6页
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque... Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner. 展开更多
关键词 weighted frequent pattern (WFP) mining data streams data mining slidingwindow SWFP-Miner
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部