期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
跨级可变形Transformer编解码视网膜图像分割算法 被引量:2
1
作者 梁礼明 阳渊 +1 位作者 何安军 李仁杰 《无线电工程》 北大核心 2023年第9期1990-2001,共12页
眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encodin... 眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encoding and Decoding Net,CTED-Net)视网膜图像分割算法。在特征提取网络中融入通道像素增强模块和跨级融合骨干,实现对视网膜血管全局特征的粗提取;在网络编码部分加入可变形自适应编码Transformer模块(Deformable Adaptive Coding Transformer Module,DACT),通过可变形编码的方式增大模型感受野;在编解码结构底层加入深层语义门控注意模块,实现对视网膜血管深层特征的充分学习,以改善血管图像边缘分割模糊的问题。在模型训练阶段采用加权交叉焦点损失函数,克服视网膜血管图像样本不平衡的问题。在公共数据集DRIVE和STARE上进行仿真实验,所提算法灵敏度、特异性、准确率和AUC指标在DRIVE上达到84.25%、98.17%、96.46%和98.70%,在STARE上达到80.22%、98.64%、96.71%和98.78%。通过与其他先进算法对比分析可以看出,所提算法分割效果可靠且整体性能先进。 展开更多
关键词 可变形Transformer 跨级融合骨干 加权交叉焦点损失函数 视网膜血管图像分割 深层语义门控注意模块
下载PDF
基于动态卷积的胸部X光片疾病分类算法 被引量:2
2
作者 李锵 赵启蒙 关欣 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2022年第9期953-964,共12页
胸部疾病严重威胁人类健康,及时并精准地检测胸部疾病对患者的治疗与康复具有重要意义.胸部疾病经常通过胸部X光片进行诊断,但由于胸部疾病的多样性以及病理特征的复杂性,现有的胸部X光片疾病分类算法存在分类准确度较低、模型复杂度较... 胸部疾病严重威胁人类健康,及时并精准地检测胸部疾病对患者的治疗与康复具有重要意义.胸部疾病经常通过胸部X光片进行诊断,但由于胸部疾病的多样性以及病理特征的复杂性,现有的胸部X光片疾病分类算法存在分类准确度较低、模型复杂度较高等问题.针对以上问题,提出一种基于动态卷积的胸部X光片疾病分类算法.将动态卷积模块加入密集连接网络,在不显著增加网络模型尺寸的前提下,增强网络对多尺度信息的特征提取能力,在提升分类准确度的同时保持高效推理;使用Meta-ACON改进ReLU(rectified linear units)激活函数,通过线性-非线性切换因子自适应地选择是否激活以及使用何种激活函数,从而增强网络的泛化能力;提出加权焦点损失函数,在焦点损失函数的基础上加入权重调整因子,使网络依据分类的难易程度为每种疾病合理分配权重,增大较难分类疾病的损失占比以提高其分类准确度,进而优化整体性能;对数据加载方式进行优化,增大批数据处理量以提升批归一化效果;在测试阶段使用测试时数据增强策略,综合分析多个维度的分类结果,提高分类的准确性与鲁棒性.在chest X-ray14数据集上的实验结果表明,在密集连接网络中加入动态卷积模块、Meta-ACON激活函数、加权焦点损失函数并在实验时优化数据加载方式、使用测试时数据增强策略的算法对14种胸部疾病分类的平均受试者工作特征曲线下面积(area under receiver operating characteristic curve,AUC)值达到0.8361,针对单个疾病标签的AUC值最高可达0.9534,高于目前6种先进算法.实验结果表明,基于动态卷积的胸部X光片疾病分类算法具有分类准确度高、模型鲁棒性强等优势,可良好地适用于胸部X光片疾病分类任务. 展开更多
关键词 胸部X光片 疾病分类 密集连接网络 动态卷积 ACON激活函数 加权焦点损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部