针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squa...针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。展开更多
针对自训练半监督支持向量机算法中的低效问题,采用加权球结构支持向量机代替传统支持向量机,提出自训练半监督加权球结构支持向量机。传统支持向量机需要求解二次凸规划问题,在处理大规模数据时会消耗大量存储空间和计算时间,特别是在...针对自训练半监督支持向量机算法中的低效问题,采用加权球结构支持向量机代替传统支持向量机,提出自训练半监督加权球结构支持向量机。传统支持向量机需要求解二次凸规划问题,在处理大规模数据时会消耗大量存储空间和计算时间,特别是在多分类问题上更加困难。利用球结构支持向量机进行多类别分类,大大缩短了训练时间,降低了算法复杂度。球结构支持向量机在不同类别样本数目不均衡时训练分类错误倾向于样本数目较小的类别,通过权值的引入,降低了球结构支持向量机对样本不均衡的敏感性,补偿了类别差异对算法推广性能造成的不利影响。在人工数据集和UCI(university of california irvine)数据集上的实验结果表明,该方法对有标记样本的鲁棒性较好,不仅能够提高效率,且分类精度也有显著提高。展开更多
文摘针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。
文摘针对自训练半监督支持向量机算法中的低效问题,采用加权球结构支持向量机代替传统支持向量机,提出自训练半监督加权球结构支持向量机。传统支持向量机需要求解二次凸规划问题,在处理大规模数据时会消耗大量存储空间和计算时间,特别是在多分类问题上更加困难。利用球结构支持向量机进行多类别分类,大大缩短了训练时间,降低了算法复杂度。球结构支持向量机在不同类别样本数目不均衡时训练分类错误倾向于样本数目较小的类别,通过权值的引入,降低了球结构支持向量机对样本不均衡的敏感性,补偿了类别差异对算法推广性能造成的不利影响。在人工数据集和UCI(university of california irvine)数据集上的实验结果表明,该方法对有标记样本的鲁棒性较好,不仅能够提高效率,且分类精度也有显著提高。