期刊文献+
共找到1,095篇文章
< 1 2 55 >
每页显示 20 50 100
基于特征加权混合隶属度的模糊孪生支持向量机 被引量:1
1
作者 吕思雨 赵嘉 +2 位作者 吴烈阳 张翼英 韩龙哲 《南昌工程学院学报》 CAS 2024年第1期93-101,118,共10页
模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对... 模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对以上问题,提出了一种基于特征加权混合隶属度的FM-FTSVM。首先计算每个特征的信息增益,并依据信息增益值的大小为特征赋予权重,降低不相关或弱相关特征的作用,使其能更好地应用于高维数据分类;然后,为每一类样本构造一个最小包围球计算基于紧密度的特征加权隶属度,并结合基于距离的特征加权隶属度得到特征加权混合隶属度,综合考虑样本点到类中心的特征加权欧式距离和样本间的紧密程度,可更好识别离群点或噪声数据;最后,融合特征加权核函数,降低不相关特征对核函数或距离计算产生的影响。与对比算法在人工数据集、高维数据集和UCI数据集上进行比较,发现本文提出的方法在区分离群点、噪声和有效样本上有明显优势,且在高维数据集上可获得更好分类效果。 展开更多
关键词 模糊孪生支持向量 特征加权 信息增益 紧密度 隶属度 高维数据
下载PDF
直觉模糊的结构化最小二乘孪生支持向量机
2
作者 张法滢 吕莉 +2 位作者 韩龙哲 刘东晓 樊棠怀 《应用科学学报》 CAS CSCD 北大核心 2024年第2期350-363,共14页
针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squa... 针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。 展开更多
关键词 支持向量 孤立森林 结构信息 直觉模糊 聚类 协方差
下载PDF
结构化最大间隔双支持向量机在股票预测中的应用
3
作者 林明松 杨晓梅 杨志霞 《计算机工程与应用》 CSCD 北大核心 2024年第11期346-355,共10页
股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分... 股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分性,提出了结构化最大间隔双支持向量机,其分别针对正类样本和负类样本,寻找两个非平行的超平面,使每一类样本离本类样本的欧式距离尽可能小,同时离异类超平面的马氏距离尽可能大。8组基准数据集的实验结果表明,该方法在含噪声数据的分类问题上具有稳定的准确率,从而提升了模型的预测性能和抗噪能力。同时将其应用到股票涨跌趋势预测中,通过对上证综指、上证A指、上证380指数以及中国平安等14只股票实证分析的结果表明,相较于其他对比模型,结构化最大间隔双支持向量机表现出了较好的预测结果,具有一定的实用价值。 展开更多
关键词 分类问题 支持向量 数据结构 马氏距离 股票预测
下载PDF
自训练半监督加权球结构支持向量机多分类方法 被引量:10
4
作者 赵芳 马玉磊 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第3期404-408,415,共6页
针对自训练半监督支持向量机算法中的低效问题,采用加权球结构支持向量机代替传统支持向量机,提出自训练半监督加权球结构支持向量机。传统支持向量机需要求解二次凸规划问题,在处理大规模数据时会消耗大量存储空间和计算时间,特别是在... 针对自训练半监督支持向量机算法中的低效问题,采用加权球结构支持向量机代替传统支持向量机,提出自训练半监督加权球结构支持向量机。传统支持向量机需要求解二次凸规划问题,在处理大规模数据时会消耗大量存储空间和计算时间,特别是在多分类问题上更加困难。利用球结构支持向量机进行多类别分类,大大缩短了训练时间,降低了算法复杂度。球结构支持向量机在不同类别样本数目不均衡时训练分类错误倾向于样本数目较小的类别,通过权值的引入,降低了球结构支持向量机对样本不均衡的敏感性,补偿了类别差异对算法推广性能造成的不利影响。在人工数据集和UCI(university of california irvine)数据集上的实验结果表明,该方法对有标记样本的鲁棒性较好,不仅能够提高效率,且分类精度也有显著提高。 展开更多
关键词 半监督学习 自训练 多分类 结构支持向量 加权球结构支持向量机
原文传递
增量式稀疏密度加权孪生支持向量回归机
5
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏化 密度加权 牛顿迭代法
下载PDF
蛋白质结构标注中的基于支持向量机的拉氏图优化方法
6
作者 王博 苏天昊 +4 位作者 徐妍婷 高恒 郭聪 李永乐 吴伟 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期545-558,共14页
拉氏图是一种经典的蛋白质结构验证工具,在蛋白质结构研究领域有广泛应用.然而,传统拉氏图定义的合理区域范围广,容错率高,且包含了一些不准确的结构.针对这一问题,提出了一种基于支持向量机(support vector machine,SVM)和贝叶斯优化... 拉氏图是一种经典的蛋白质结构验证工具,在蛋白质结构研究领域有广泛应用.然而,传统拉氏图定义的合理区域范围广,容错率高,且包含了一些不准确的结构.针对这一问题,提出了一种基于支持向量机(support vector machine,SVM)和贝叶斯优化的方法SVM-Rama,对传统拉氏图的合理区域定义进行优化和细分,使细分后的合理区域的范围精确到具体的二级结构种类,SVM-Rama法可以提高蛋白质结构验证准确率,且能简便精确地标注二级结构.研究结果表明,该方法在二级结构标记中的准确率接近传统方法取得的最好结果,但训练和计算成本远小于传统方法. 展开更多
关键词 拉氏图 支持向量 蛋白质结构标记
下载PDF
基于支持向量机的房屋建筑结构安全预警方法研究
7
作者 韩楠 《工程机械与维修》 2024年第7期160-162,共3页
分析房屋建筑结构的应力载荷及变形机理,在计算房屋建筑结构的极限承载力、进行安全预警数据分析和计算的基础上,总结了基于支持向量机的房屋建筑结构安全预警的具体步骤,并采用对比方法进行实验和分析,验证了本文所述基于支持向量机的... 分析房屋建筑结构的应力载荷及变形机理,在计算房屋建筑结构的极限承载力、进行安全预警数据分析和计算的基础上,总结了基于支持向量机的房屋建筑结构安全预警的具体步骤,并采用对比方法进行实验和分析,验证了本文所述基于支持向量机的房屋建筑结构安全预警方法,对房屋建筑结构安全预警的有效性。 展开更多
关键词 房屋建筑结构 极限承载力 支持向量 安全预警
下载PDF
基于支持向量机的砌体结构震害预测新方法研究 被引量:1
8
作者 周强 周杰 +1 位作者 赵文洋 夏贇 《地震工程与工程振动》 CSCD 北大核心 2023年第5期130-137,共8页
应用简便、可靠的震害预测方法对我国大量存在的砌体结构进行抗震性能评估,是防震减灾工作的重要举措。基于支持向量机(support vector machine,SVM)理论提出了砌体结构震害预测新方法。首先,详细阐述了基于SVM的砌体结构震害预测新方... 应用简便、可靠的震害预测方法对我国大量存在的砌体结构进行抗震性能评估,是防震减灾工作的重要举措。基于支持向量机(support vector machine,SVM)理论提出了砌体结构震害预测新方法。首先,详细阐述了基于SVM的砌体结构震害预测新方法的基本原理及步骤;其次,确定了砌体结构的震害影响因子及量化值,建立了震害样本数据库及预测模型;最后,将SVM预测结果分别与实际震害结果和BP神经网络预测结果进行对比分析。结果表明,基于SVM模型的砌体结构震害预测方法步骤简单。结果可靠,在样本数据有限的情况下相对BP神经网络算法有较大的优势,可以用于砌体结构的震害预测。 展开更多
关键词 支持向量 砌体结构 震害预测 新方法 BP神经网络
下载PDF
用球结构的支持向量机解决多分类问题 被引量:48
9
作者 朱美琳 刘向东 陈世福 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期153-158,共6页
 支持向量机是从统计学习理论中导出的,从研究二分类开始,发展至今,虽然提出了很多多类别分类的相关算法,但都各有不足之处.提出基于球结构的支持向量算法,适用于规模比较庞大的多类别问题,并对其性质进行了讨论.
关键词 结构 多分类问题 支持向量 核函数 分类 模式识别 统计学习理论
下载PDF
球结构支持向量机的改进算法及仿真研究 被引量:18
10
作者 吴强 贾传荧 +1 位作者 张爱锋 刘爽 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期345-348,共4页
球结构支持向量机算法将多类样本数据的每一类用各自的超球来界定,从而显著地降低了二次规划的复杂程度。在该算法的基础上,提出了子超球支持向量机多分类算法。新算法改进了超球重叠区域的训练和决策方法,提高了多分类问题的分类精度... 球结构支持向量机算法将多类样本数据的每一类用各自的超球来界定,从而显著地降低了二次规划的复杂程度。在该算法的基础上,提出了子超球支持向量机多分类算法。新算法改进了超球重叠区域的训练和决策方法,提高了多分类问题的分类精度。定义了重叠频数、重叠总频数和重叠率等概念,并在此基础上分析了径向基核函数的参数σ对超球相互位置的影响。对两组实际数据仿真实验验证了该算法的有效性和对σ分析的正确性,同时表明正确选择σ可得到较高的分类精度。 展开更多
关键词 结构支持向量 多分类问题 核参数
下载PDF
基于球结构支持向量机的多标签分类的主动学习 被引量:3
11
作者 蒋华 戚玉顺 《计算机应用》 CSCD 北大核心 2012年第5期1359-1361,共3页
为了实现数据的多标签分类,减少多标签训练样本开销,将球结构支持向量机与主动学习方法结合用于多标签分类,依据球重叠区域样本距离差值度确定样本类别,分析多标签分类特性,采用样本近邻方法更新分类器。实验结果表明,该方法可以用较少... 为了实现数据的多标签分类,减少多标签训练样本开销,将球结构支持向量机与主动学习方法结合用于多标签分类,依据球重叠区域样本距离差值度确定样本类别,分析多标签分类特性,采用样本近邻方法更新分类器。实验结果表明,该方法可以用较少的训练样本获得更有效的分类结果。 展开更多
关键词 结构支持向量 欧氏距离 多标签分类 多类分类 主动学习方法
下载PDF
球结构支持向量机的主动自适应方法 被引量:1
12
作者 蒋华 戚玉顺 曾梅梅 《计算机工程与设计》 CSCD 北大核心 2012年第11期4116-4120,共5页
为了解决大样本集标记工作问题和分类器对新样本分类适应能力差的问题,结合球结构支持向量机,提出了一种主动学习自适应性分类方法。该方法根据主动学习思想,以边界近邻策略迭代选取最有价值的样本,初始训练分类器,再依据增量学习方法... 为了解决大样本集标记工作问题和分类器对新样本分类适应能力差的问题,结合球结构支持向量机,提出了一种主动学习自适应性分类方法。该方法根据主动学习思想,以边界近邻策略迭代选取最有价值的样本,初始训练分类器,再依据增量学习方法选取包含新信息的样本,以阶段跟新方式重新训练分类器,并根据余弦相似度对内存中支持向量进行控制。实验结果表明,该方法既减少了标记开销,又保持了分类器分类性能的稳定性和延续性。 展开更多
关键词 主动学习 结构支持向量 训练样本 增量学习 支持向量 内存控制
下载PDF
面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究 被引量:4
13
作者 程惠珠 杨婉琪 +2 位作者 李福生 马骞 赵彦春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3742-3746,共5页
研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测... 研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测试标准样品的荧光光谱并建立校准曲线,通过反演计算得到待测样品的元素含量。由于样品元素间存在基体效应,以及荧光谱特征峰存在叠加干扰,未经优化的校准曲线的线性度较差,这给反演计算来困难。为了解决上述问题,分别利用小波变换、非对称加权惩罚最小二乘法(arPLS)对光谱进行去噪和扣除本底基线,提高校准曲线的决定系数(R2);运用竞争性自适应重加权算法(CARS),针对不同目标元素优化变量选取;进一步地,基于选取的变量建立粒子群算法(PSO)优化的支持向量机回归(SVR)模型,并通过该模型反演计算各元素含量,提高定量分析的准确度和预测的泛化能力。实验结果显示,经过小波去噪和arPLS本底扣除后的校准曲线的决定系数(R2)有明显提升,Cr、Cu、Zn、As、Pb分别从0.965、0.979、0.971、0.794、0.915提高为0.979、0.987、0.981、0.828、0.953;通过CARS选取的谱线变量的个数大幅度减少,从2 048个通道降低到30个以下,为原来变量个数的1.5%,提高了变量选择的精准性;与偏最小二乘法(PLS)、未优化的SVR模型进行对比,采用CARS变量选择和PSO优化的SVR模型进行含量预测,训练集RC2与测试集RP2的决定系数分别在0.99、0.90以上,预测准确性有明显提高。因此,所提出的竞争性自适应重加权算法和PSO优化的SVR定量分析模型对于土壤重金属元素定量分析具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 土壤重金属 竞争性自适应重加权算法 粒子群算法 支持向量回归模型
下载PDF
基于主成分分析和球结构支持向量机的人耳识别方法 被引量:2
14
作者 谌昌强 肜丽 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第8期136-140,共5页
提出一种基于主成分分析和球结构支持向量机的人耳识别方法.首先将人耳从侧面人脸中提取出来,然后采用主成分分析方法对人耳图像进行特征提取,最后采用球结构支持向量及对人耳图像进行训练和识别.与传统的多分类方法相比,该分类方法识... 提出一种基于主成分分析和球结构支持向量机的人耳识别方法.首先将人耳从侧面人脸中提取出来,然后采用主成分分析方法对人耳图像进行特征提取,最后采用球结构支持向量及对人耳图像进行训练和识别.与传统的多分类方法相比,该分类方法识别性能更高,这为非打扰式生物特征识别提供了一条有效途径. 展开更多
关键词 人耳识别 主成分分析 结构支持向量 多分类
下载PDF
基于超球结构的支持向量机增量学习算法 被引量:1
15
作者 郭雪松 孙林岩 徐晟 《运筹与管理》 CSCD 2007年第4期45-49,共5页
本文首先分析了增量学习过程中支持向量与非支持向量的相互转化问题,而后在此基础上提出了基于超球结构的支持向量机增量学习算法。该算法主要利用超球结构,完成对增量学习中训练样本的选取,进而完成分类器的重构。实验表明,该算法比传... 本文首先分析了增量学习过程中支持向量与非支持向量的相互转化问题,而后在此基础上提出了基于超球结构的支持向量机增量学习算法。该算法主要利用超球结构,完成对增量学习中训练样本的选取,进而完成分类器的重构。实验表明,该算法比传统支持向量机增量学习算法具有更高的分类精度。 展开更多
关键词 器学习 增量学习算法 结构 支持向量
下载PDF
基于改进型球结构支持向量机的故障诊断方法及其应用 被引量:1
16
作者 袁胜发 褚福磊 《推进技术》 EI CAS CSCD 北大核心 2006年第1期1-4,47,共5页
在涡轮泵等机械设备的故障诊断中,多类故障诊断是经常出现的问题。为提高多类故障诊断速度,在球结构支持向量机的基础上,对其分类规则进行改进,充分考虑分类球的大小不同,经过理论分析和实验验证得到样本点落在分类球外和分类球重叠区... 在涡轮泵等机械设备的故障诊断中,多类故障诊断是经常出现的问题。为提高多类故障诊断速度,在球结构支持向量机的基础上,对其分类规则进行改进,充分考虑分类球的大小不同,经过理论分析和实验验证得到样本点落在分类球外和分类球重叠区域的最佳分类公式。用该算法和其它几种常用算法对涡轮泵模拟故障进行分类比较,结果表明,基于改进型球结构支持向量机的故障诊断算法学习速度更快,诊断效果好。 展开更多
关键词 涡轮泵 故障诊断 结构支持向量 多类算法
下载PDF
基于KPCA和结构化支持向量机的视频目标跟踪
17
作者 龙君芳 马琳娟 李庆珍 《南京理工大学学报》 CAS CSCD 北大核心 2023年第5期671-677,共7页
为了提高视频目标跟踪性能,采用结构化支持向量机用于视频目标跟踪,并借助核主成分分析用于视频目标特征降维及去冗余处,以增强视频目标分类适应度。首先,提取视频目标特征,经过核主成分分析映射至更利于目标分类的特征向量。接着,建立... 为了提高视频目标跟踪性能,采用结构化支持向量机用于视频目标跟踪,并借助核主成分分析用于视频目标特征降维及去冗余处,以增强视频目标分类适应度。首先,提取视频目标特征,经过核主成分分析映射至更利于目标分类的特征向量。接着,建立基于结构化支持向量机的视频目标判别分类模型,从而充分挖掘目标内数据特征的紧密性,有效提高了目标跟踪的精准率。最后,针对结构化支持向量机进行关键参数求解,并获得稳定的视频目标跟踪分类结果。根据分类结果判定对应的目标以完成视频目标跟踪。试验结果表明,对于4类公共视频数据集,对比其他3种视频跟踪算法,所提方法在跟踪精准率和跟踪速率等4个关键性能指标方面具有明显优势,在应对大规模视频目标跟踪时具有较强的适应度。 展开更多
关键词 视频目标跟踪 结构支持向量 核主成分分析 精准率 跟踪速率
下载PDF
结构化加权最小二乘支持向量机 被引量:2
18
作者 鲁淑霞 田如娜 《计算机科学》 CSCD 北大核心 2013年第12期52-54,80,共4页
针对最小二乘支持向量机(LSSVM)没有考虑样例本身的结构信息和对异常点敏感,提出了一种新的分类器———结构化加权最小二乘支持向量机(SWLSSVM),SWLSSVM通过在目标函数中引入协方差矩阵考虑了样例的结构信息;为了减少异常点的影响,其... 针对最小二乘支持向量机(LSSVM)没有考虑样例本身的结构信息和对异常点敏感,提出了一种新的分类器———结构化加权最小二乘支持向量机(SWLSSVM),SWLSSVM通过在目标函数中引入协方差矩阵考虑了样例的结构信息;为了减少异常点的影响,其根据本类样本点到该类中心的距离对误差项进行加权。实验表明,SWLSSVM与LSSVM和SVM相比具有更好的分类和泛化性能。 展开更多
关键词 最小二乘支持向量 结构 协方差矩阵
下载PDF
基于超球和ASSRFOA的多生支持向量机
19
作者 莫源乐 朱嘉静 +2 位作者 刘勇国 张云 李巧勤 《计算机系统应用》 2023年第9期43-52,共10页
支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量... 支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量机(multiple birth support vector machine,MBSVM)能够以较低的复杂度实现多分类,但缺点在于分类精度较低.本文对MBSVM进行改进,提出了一种新的SVM多分类算法:基于超球(hypersphere)和自适应缩小步长果蝇优化算法(fruit fly optimization algorithm with adaptive step size reduction,ASSRFOA)的MBSVM,简称HA-MBSVM.通过拟合超球得到的信息,先进行类别划分再构建分类器,并引入约束距离调节因子来适当提高分类器的差异性,同时采用ASSRFOA求解二次规划问题,HA-MBSVM可以更好地解决多分类问题.我们采用6个数据集评估HA-MBSVM的性能,实验结果表明HA-MBSVM的整体性能优于各对比算法. 展开更多
关键词 多生支持向量 多分类 自适应缩小步长 果蝇优化算法
下载PDF
用于多类别分类的一种加权超球支持向量机算法
20
作者 刘爽 陈鹏 李锡祚 《微电子学与计算机》 CSCD 北大核心 2015年第1期19-23,28,共6页
在One-Class基础上发展起来的超球支持向量机算法能有效地解决多类别分类问题.但是原始的超球支持向量机算法仍有很多需要改进的地方.经过推导和实验,得到如下结论,即超球支持向量机算法过度依赖于每个训练样本,即使该训练样本为噪音数... 在One-Class基础上发展起来的超球支持向量机算法能有效地解决多类别分类问题.但是原始的超球支持向量机算法仍有很多需要改进的地方.经过推导和实验,得到如下结论,即超球支持向量机算法过度依赖于每个训练样本,即使该训练样本为噪音数据或是离群异常数据.因此提出在训练之前加入预处理算法,通过相似度计算删除噪音点和异常点.在训练过程中,根据公式计算每个样本的权值,区别对待每个训练样本,确保SMO求解过程迅速收敛.在测试阶段,根据测试点的位置合理选择分类规则进行正确分类.实验结果表明提出的算法可以有效减少噪音数据和异常数据对分类结果的影响,同时提高了分类精度. 展开更多
关键词 支持向量 加权 异常点 噪音 多类别分类
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部