By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then propos...By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then proposes a hybrid aggregation (HA) operator-based method for multiple attribute decision making (MADM) problems. The theoretical analyses and the numerical results show that the HA operator generalizes both the AWM and OWA operators, and reflects the importance of both the given argument and the ordered position of the argument. Thus, the HA operator can reflect better real situations in practical applications. Finally, an illustrative example is given.展开更多
The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the compa...The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.展开更多
Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision we...Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors.展开更多
An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ...An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.展开更多
In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing...In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.展开更多
The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the correspon...The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the corresponding work of the references.展开更多
The maximal entropy ordered weighted averaging (ME-OWA) operator is used to aggregate metasearch engine results, and its newly analytical solution is also applied. Within the current context of the OWA operator, the...The maximal entropy ordered weighted averaging (ME-OWA) operator is used to aggregate metasearch engine results, and its newly analytical solution is also applied. Within the current context of the OWA operator, the methods for aggregating metasearch engine results are divided into two kinds. One has a unique solution, and the other has multiple solutions. The proposed method not only has crisp weights, but also provides multiple aggregation results for decision makers to choose from. In order to prove the application of the ME-OWA operator method, under the context of aggregating metasearch engine results, an example is given, which shows the results obtained by the ME-OWA operator method and the minimax linear programming ( minimax-LP ) method. Comparison between these two methods are also made. The results show that the ME-OWA operator has nearly the same aggregation results as those of the minimax-LP method.展开更多
Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA...Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.展开更多
Sentiment analysis of online reviews and other user generated content is an important research problem for its wide range of applications.In this paper,we propose a feature-based vector model and a novel weighting alg...Sentiment analysis of online reviews and other user generated content is an important research problem for its wide range of applications.In this paper,we propose a feature-based vector model and a novel weighting algorithm for sentiment analysis of Chinese product reviews.Specifically,an opinionated document is modeled by a set of feature-based vectors and corresponding weights.Different from previous work,our model considers modifying relationships between words and contains rich sentiment strength descriptions which are represented by adverbs of degree and punctuations.Dependency parsing is applied to construct the feature vectors.A novel feature weighting algorithm is proposed for supervised sentiment classification based on rich sentiment strength related information.The experimental results demonstrate the effectiveness of the proposed method compared with a state of the art method using term level weighting algorithms.展开更多
In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology,...In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.展开更多
In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previou...In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previous results.展开更多
The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted ...The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted composition operator.展开更多
A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguist...A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.展开更多
In this paper, we give a necessary and sufficient condition for weighted composition operators Cu,φ to be boundedness on Bloch type spaces B^α. The theorem generalizes some previous results.
In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem...In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
文摘By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then proposes a hybrid aggregation (HA) operator-based method for multiple attribute decision making (MADM) problems. The theoretical analyses and the numerical results show that the HA operator generalizes both the AWM and OWA operators, and reflects the importance of both the given argument and the ordered position of the argument. Thus, the HA operator can reflect better real situations in practical applications. Finally, an illustrative example is given.
基金The Technological Innovation Foundation of NanjingForestry University(No.163060033).
文摘The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.
文摘Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金The National High Technology Research and Development Program of China (863Program) ( No2009AA01Z235,2006AA01Z263)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University(No2008A10)
文摘An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.
基金The National Natural Science Foundation of China(79970093) the Ph.D. Dissertation Foundation of Southeast University- NARI-Relays Electric Co. Ltd.
文摘In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.
文摘The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the corresponding work of the references.
基金The National Natural Science Foundation of China(No.71171048)
文摘The maximal entropy ordered weighted averaging (ME-OWA) operator is used to aggregate metasearch engine results, and its newly analytical solution is also applied. Within the current context of the OWA operator, the methods for aggregating metasearch engine results are divided into two kinds. One has a unique solution, and the other has multiple solutions. The proposed method not only has crisp weights, but also provides multiple aggregation results for decision makers to choose from. In order to prove the application of the ME-OWA operator method, under the context of aggregating metasearch engine results, an example is given, which shows the results obtained by the ME-OWA operator method and the minimax linear programming ( minimax-LP ) method. Comparison between these two methods are also made. The results show that the ME-OWA operator has nearly the same aggregation results as those of the minimax-LP method.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.
基金This work was supported in part by National Natural Science Foundation of China under Grants No.60970052,the Beijing Natural Science Foundation under Grants No.4133084,the Beijing Educational Committee Science and Technology Development Planned under Grants No.KM201410028017 and the Beijing Key Disciplines of Computer Application Technology
文摘Sentiment analysis of online reviews and other user generated content is an important research problem for its wide range of applications.In this paper,we propose a feature-based vector model and a novel weighting algorithm for sentiment analysis of Chinese product reviews.Specifically,an opinionated document is modeled by a set of feature-based vectors and corresponding weights.Different from previous work,our model considers modifying relationships between words and contains rich sentiment strength descriptions which are represented by adverbs of degree and punctuations.Dependency parsing is applied to construct the feature vectors.A novel feature weighting algorithm is proposed for supervised sentiment classification based on rich sentiment strength related information.The experimental results demonstrate the effectiveness of the proposed method compared with a state of the art method using term level weighting algorithms.
基金Supported by the National Natural Science Foundation of China(50874106)the National High Technology Research and Development Program of China(2007AA06Z114)
文摘In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.
基金the Foundation of Higher School of Ningxia(04M33)the NSF of Ningxia University(ZR0622)
文摘In this paper, we give the strong converse inequalities of type B with the new K-functional Kλα(f,t2)w(0 ≤λ≤ 1, 0 < α < 2) on weighted approximation for Sz′asz-Mirakjan operators, which extend the previous results.
基金the National Natural Science Foundation of China(10471039)the Natural Science Foundation of Zhejiang Province(Y606197)the Natural Science Foundation of Huzhou City(2005YZ02)
文摘The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted composition operator.
基金The National Natural Science Foundation of China(No.61273209,71571123)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1527)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0207)
文摘A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.
基金the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2005E06)
文摘In this paper, we give a necessary and sufficient condition for weighted composition operators Cu,φ to be boundedness on Bloch type spaces B^α. The theorem generalizes some previous results.
文摘In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.